Berliner Boersenzeitung - Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química

EUR -
AED 4.18829
AFN 79.786672
ALL 98.228214
AMD 437.536589
ANG 2.041031
AOA 1045.788824
ARS 1346.278084
AUD 1.755342
AWG 2.046293
AZN 1.943285
BAM 1.955964
BBD 2.306593
BDT 139.611675
BGN 1.955964
BHD 0.430736
BIF 3400.884402
BMD 1.140445
BND 1.469323
BOB 7.89366
BRL 6.340197
BSD 1.142396
BTN 97.81318
BWP 15.283278
BYN 3.738513
BYR 22352.729264
BZD 2.294692
CAD 1.561897
CDF 3284.48308
CHF 0.937613
CLF 0.027773
CLP 1062.428846
CNY 8.199175
CNH 8.198291
COP 4698.19289
CRC 582.348699
CUC 1.140445
CUP 30.221802
CVE 110.274222
CZK 24.805136
DJF 203.427012
DKK 7.463474
DOP 67.435639
DZD 150.181759
EGP 56.373714
ERN 17.106681
ETB 155.989545
FJD 2.566919
FKP 0.842834
GBP 0.843026
GEL 3.113861
GGP 0.842834
GHS 11.708979
GIP 0.842834
GMD 80.972027
GNF 9901.828048
GTQ 8.778734
GYD 239.360017
HKD 8.94543
HNL 29.790491
HRK 7.539717
HTG 149.802527
HUF 403.934788
IDR 18607.905823
ILS 3.994256
IMP 0.842834
INR 97.833681
IQD 1496.525148
IRR 48027.010022
ISK 144.118521
JEP 0.842834
JMD 182.445257
JOD 0.808621
JPY 165.222068
KES 147.652348
KGS 99.732386
KHR 4583.383289
KMF 492.106504
KPW 1026.485806
KRW 1551.211421
KWD 0.349
KYD 0.95198
KZT 582.628723
LAK 24663.062467
LBP 102356.359628
LKR 341.748579
LRD 227.899058
LSL 20.283196
LTL 3.367439
LVL 0.689844
LYD 6.22052
MAD 10.454674
MDL 19.688646
MGA 5153.43096
MKD 61.540146
MMK 2394.38643
MNT 4079.124485
MOP 9.232272
MRU 45.363794
MUR 52.016145
MVR 17.568605
MWK 1980.865651
MXN 21.793117
MYR 4.821237
MZN 72.943316
NAD 20.283196
NGN 1778.045998
NIO 42.043516
NOK 11.534241
NPR 156.501088
NZD 1.896633
OMR 0.438506
PAB 1.142396
PEN 4.141646
PGK 4.695393
PHP 63.764016
PKR 322.205645
PLN 4.287859
PYG 9119.762647
QAR 4.166148
RON 5.047958
RSD 117.179799
RUB 89.590292
RWF 1616.935217
SAR 4.284458
SBD 9.519743
SCR 16.762202
SDG 684.841637
SEK 10.99903
SGD 1.46867
SHP 0.896211
SLE 25.717466
SLL 23914.569443
SOS 652.854595
SRD 42.130376
STD 23604.916622
SVC 9.995836
SYP 14827.902431
SZL 20.276696
THB 37.37814
TJS 11.293744
TMT 3.991559
TND 3.388083
TOP 2.671042
TRY 44.726561
TTD 7.730646
TWD 34.136614
TZS 3035.853876
UAH 47.308456
UGX 4135.345821
USD 1.140445
UYU 47.47397
UZS 14596.22062
VES 112.208523
VND 29713.163686
VUV 137.255383
WST 3.133948
XAF 656.011859
XAG 0.031697
XAU 0.000344
XCD 3.082111
XDR 0.815868
XOF 656.011859
XPF 119.331742
YER 277.527795
ZAR 20.280021
ZMK 10265.38096
ZMW 28.302367
ZWL 367.222944
Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química
Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química / foto: Valentina BRESCHI, Nalini LEPETIT-CHELLA, Jean-Michel CORNU, Lise KIENNEMANN - AFP

Criação de novas proteínas, um campo promissor contemplado com o Nobel de Química

Prever a estrutura das proteínas e criar novas para o tratamento de doenças ou para degradar plásticos é um campo promissor explorado pelos americanos David Baker e John Jumper, e pelo britânico Demis Hassabis, contemplados, nesta quarta-feira (9) com o Prêmio Nobel de Química.

Tamanho do texto:

- O que é uma proteína? -

As proteínas são moléculas que desempenham um papel fundamental em quase todas as funções dos organismos vivos.

São compostas de uma sequência de aminoácidos, blocos básicos de 20 tipos diferentes que podem ser combinados infinitamente. Seguindo as instruções armazenadas no DNA, os aminoácidos de uma proteína se entrelaçam para formar uma longa cadeia que se retorce, adotando uma estrutura tridimensional específica.

A ordem dos aminoácidos determina qual será a estrutura tridimensional da proteína. E é essa estrutura que dá à proteína a sua função.

"As proteínas são teu sistema imunológico; as enzimas, que também são proteínas, são a digestão", explica à AFP Sophie Sacquin-Mora, especialista do Laboratório francês de Bioquímica Teórica.

"Buscar uma estrutura equivale a querer encontrar uma proteína com uma função específica. A natureza já nos proporciona dezenas de milhares de proteínas diferentes, mas às vezes queremos que faça algo que ainda não sabe fazer", acrescenta.

- O que os premiados com o Nobel descobriram? -

O americano David Baker "decifrou o código" da sequência de aminoácidos, nas palavras do Comitê Nobel. Ele desenhou uma estrutura de proteína completamente nova e, com ajuda do Rosetta, programa de computador criado por ele, conseguiu determinar qual sequência de aminoácidos permitiria obter um determinado resultado.

O Rosetta explorou uma base de dados de todas as estruturas proteicas conhecidas e buscou pequenos fragmentos de proteínas que mostrassem semelhanças com a estrutura desejada. Em seguida, otimizou estes fragmentos e propôs uma sequência de aminoácidos.

O britânico Demis Hassabis e o americano John Jumper fizeram o caminho inverso, prevendo como seria uma proteína a partir da sequência de aminoácidos.

Para isso, usaram inteligência artificial. Com redes neurais artificiais e aprendizagem profunda, com as quais John Hopfield e Geoffrey Hinton foram premiados na terça-feira com o Nobel de Física, eles treinaram seu modelo, AlphaFold2, alimentando-o com todas as sequências de aminoácidos e as estruturas correspondentes conhecidas até hoje.

Diante de uma sequência desconhecida, o AlphaFold2 compara as semelhanças com as sequências já conhecidas e elabora um mapa que estima a distância entre cada aminoácido nas proteínas, e pouco a pouco consegue montar o quebra-cabeças tridimensional. Assim, conseguiram prever a estrutura de quase a totalidade das 200 milhões de proteínas conhecidas.

- Para que serve? -

Visualizar a estrutura de uma proteína permite "compreender melhor porque certas doenças se desenvolvem, como se produz a resistência aos antibióticos ou porque alguns micróbios conseguem decompor o plástico", destaca o Comitê Nobel.

Criar proteínas com novas funções "pode levar a novos nanomateriais, a medicamentos específicos, ao desenvolvimento mais rápido de vacinas, a desenvolver sensores minimalistas e uma indústria química mais ecológica", acrescenta.

Durante o anúncio do Nobel, David Baker mencionou a criação de novos antivirais durante a pandemia de covid-19.

"Se trabalhássemos de forma aleatória, só fazendo combinações, levaria muito tempo" para criar novas proteínas, detalha Sacquin-Mora.

"Neste caso, partimos de uma proteína que conhecemos um pouco, que sabemos que funciona, e fazemos modificações, especialmente na sequência, de forma muito específica, para obter a função que nos interessa exatamente. Fazemos 50 tentativas ao invés de cinco milhões, o que representa uma economia considerável de tempo", diz.

(T.Renner--BBZ)