Berliner Boersenzeitung - Nuclear fusion: harnessing the power of the stars

EUR -
AED 4.26841
AFN 80.362394
ALL 97.542216
AMD 446.735356
ANG 2.080099
AOA 1065.794205
ARS 1494.414015
AUD 1.776887
AWG 2.092071
AZN 1.980459
BAM 1.954642
BBD 2.348809
BDT 141.226338
BGN 1.956132
BHD 0.43854
BIF 3466.946195
BMD 1.162261
BND 1.493215
BOB 8.038238
BRL 6.486005
BSD 1.163311
BTN 100.147673
BWP 15.618748
BYN 3.807045
BYR 22780.325028
BZD 2.336716
CAD 1.596076
CDF 3354.287055
CHF 0.932807
CLF 0.029182
CLP 1120.296341
CNY 8.342655
CNH 8.346165
COP 4674.330945
CRC 587.052233
CUC 1.162261
CUP 30.799929
CVE 110.199718
CZK 24.634179
DJF 206.947405
DKK 7.463699
DOP 70.258379
DZD 151.514244
EGP 57.439973
ERN 17.433922
ETB 161.636047
FJD 2.620788
FKP 0.864949
GBP 0.866519
GEL 3.150183
GGP 0.864949
GHS 12.127816
GIP 0.864949
GMD 83.106172
GNF 10094.020343
GTQ 8.931709
GYD 243.385819
HKD 9.121487
HNL 30.445964
HRK 7.532663
HTG 152.739518
HUF 398.923459
IDR 18977.696027
ILS 3.908598
IMP 0.864949
INR 100.127437
IQD 1523.897249
IRR 48945.741055
ISK 142.354235
JEP 0.864949
JMD 186.029797
JOD 0.824089
JPY 172.932309
KES 150.300962
KGS 101.640213
KHR 4662.238109
KMF 491.989694
KPW 1046.046309
KRW 1616.942576
KWD 0.355234
KYD 0.969426
KZT 620.152624
LAK 25087.138481
LBP 104232.653
LKR 350.972086
LRD 233.241828
LSL 20.596898
LTL 3.431856
LVL 0.703041
LYD 6.327252
MAD 10.519168
MDL 19.788278
MGA 5176.933206
MKD 61.523554
MMK 2439.678938
MNT 4168.013035
MOP 9.404829
MRU 46.275587
MUR 53.119698
MVR 17.903172
MWK 2017.205016
MXN 21.777182
MYR 4.935007
MZN 74.338683
NAD 20.596898
NGN 1779.387897
NIO 42.814637
NOK 11.838157
NPR 160.236077
NZD 1.94976
OMR 0.446894
PAB 1.163311
PEN 4.140847
PGK 4.817146
PHP 66.377189
PKR 331.310933
PLN 4.244785
PYG 9003.666265
QAR 4.229694
RON 5.072695
RSD 117.080642
RUB 91.265035
RWF 1681.00418
SAR 4.36165
SBD 9.64543
SCR 17.082281
SDG 697.942292
SEK 11.245095
SGD 1.492813
SHP 0.913355
SLE 26.62005
SLL 24372.046713
SOS 664.806172
SRD 43.245469
STD 24056.466061
STN 24.485495
SVC 10.17897
SYP 15112.803405
SZL 20.592801
THB 37.628259
TJS 11.196867
TMT 4.079538
TND 3.419874
TOP 2.722137
TRY 46.947496
TTD 7.897322
TWD 34.181766
TZS 3030.404801
UAH 48.58252
UGX 4168.530579
USD 1.162261
UYU 46.882227
UZS 14725.276806
VES 135.943958
VND 30404.760344
VUV 138.92149
WST 3.080055
XAF 655.568644
XAG 0.030448
XAU 0.000347
XCD 3.14107
XCG 2.096558
XDR 0.815317
XOF 655.568644
XPF 119.331742
YER 280.163552
ZAR 20.586499
ZMK 10461.752209
ZMW 26.785133
ZWL 374.247723
  • CMSC

    0.0900

    22.314

    +0.4%

  • CMSD

    0.0250

    22.285

    +0.11%

  • RBGPF

    0.0000

    69.04

    0%

  • SCS

    0.0400

    10.74

    +0.37%

  • RELX

    0.0300

    53

    +0.06%

  • RIO

    -0.1400

    59.33

    -0.24%

  • GSK

    0.1300

    41.45

    +0.31%

  • NGG

    0.2700

    71.48

    +0.38%

  • BP

    0.1750

    30.4

    +0.58%

  • BTI

    0.7150

    48.215

    +1.48%

  • BCC

    0.7900

    91.02

    +0.87%

  • JRI

    0.0200

    13.13

    +0.15%

  • VOD

    0.0100

    9.85

    +0.1%

  • BCE

    -0.0600

    22.445

    -0.27%

  • RYCEF

    0.1000

    12

    +0.83%

  • AZN

    -0.1200

    73.71

    -0.16%

Nuclear fusion: harnessing the power of the stars
Nuclear fusion: harnessing the power of the stars / Photo: Philip Saltonstall - Lawrence Livermore National Laboratory/AFP

Nuclear fusion: harnessing the power of the stars

The US Department of Energy's nuclear fusion laboratory says there will be a "major scientific breakthrough" announced Tuesday, as media report that scientists have finally surpassed an important milestone for the technology: getting more energy out than was put in.

Text size:

The announcement has the scientific community abuzz, as nuclear fusion is considered by some to be the energy of the future, particularly as it produces no greenhouse gases, leaves little waste and has no risk of nuclear accidents.

Here is an update on how nuclear fusion works, what projects are underway and estimates on when they could be completed:

- Energy of the stars -

Fusion differs from fission, the technique currently used in nuclear power plants, by fusing two atomic nuclei instead of splitting one.

In fact, fusion is the process that powers the sun.

Two light hydrogen atoms, when they collide at very high speeds, fuse together into one heavier element, helium, releasing energy in the process.

"Controlling the power source of the stars is the greatest technological challenge humanity has ever undertaken," tweeted physicist Arthur Turrell, author of "The Star Builders."

- Two distinct methods -

Producing fusion reactions on Earth is only possible by heating matter to extremely high temperatures -- over 100 million degrees Celsius (180 million Fahrenheit).

"So we have to find ways to isolate this extremely hot matter from anything that could cool it down. This is the problem of containment," Erik Lefebvre, project leader at the French Atomic Energy Commission (CEA), told AFP.

One method is to "confine" the fusion reaction with magnets.

In a huge donut-shaped reactor, light hydrogen isotopes (deuterium and tritium) are heated until they reach the state of plasma, a very low density gas.

Magnets confine the swirling plasma gas, preventing it from coming into contact with the chamber's walls, while the atoms collide and begin fusing.

This is the type of reactor used in the major international project known as ITER, currently under construction in France, as well as the Joint European Torus (JET) near Oxford, England.

A second method is inertial confinement fusion, in which high energy lasers are directed simultaneously into a thimble-sized cylinder containing the hydrogen.

This technique is used by the French Megajoule Laser (LMJ), and the world's most advanced fusion project, the California-based National Ignition Facility (NIF).

Inertial confinement is used to demonstrate the physical principles of fusion, while magnetic confinement seeks to mimic future industrial-scale reactors.

- State of research -

For decades, scientists have attempted to achieve what is known as "net energy gain" -- that is, more energy is produced by the fusion reaction than it takes to activate it.

According to reports by the Financial Times and the Washington Post, that will be the "major scientific breakthrough" announced Tuesday by the NIF.

But Lefebvre cautions that "the road is still very long" before "a demonstration on an industrial scale that is commercially viable."

He says such a project will take another 20 or 30 years to be completed.

To get there, researchers must first increase the efficiency of the lasers and reproduce the experiment more frequently.

- Fusion's benefits -

The NIF's reported success has sparked great excitement in the scientific community, which is hoping the technology could be a game-changer for global energy production.

Unlike fission, fusion carries no risk of nuclear accidents.

"If a few lasers are missing and they don't go off at the right time, or if the confinement of the plasma by the magnetic field... is not perfect," the reaction will simply stop, Lefebvre says.

Nuclear fusion also produces much less radioactive waste than current power plants, and above all, emits no greenhouse gases.

"It is an energy source that is totally carbon-free, generates very little waste, and is intrinsically extremely safe," according to Lefebvre, who says fusion could be "a future solution for the world's energy problems."

Regardless of Tuesday's announcement, however, the technology is still a far way off from producing energy on an industrial scale, and cannot therefore be relied on as an immediate solution to the climate crisis.

(O.Joost--BBZ)