Berliner Boersenzeitung - Historic NASA asteroid mission set for perilous return

EUR -
AED 4.273878
AFN 76.929127
ALL 96.379094
AMD 444.029361
ANG 2.083179
AOA 1067.160055
ARS 1669.416082
AUD 1.756076
AWG 2.097662
AZN 1.986139
BAM 1.953746
BBD 2.344036
BDT 142.270436
BGN 1.958507
BHD 0.438716
BIF 3450.523461
BMD 1.163752
BND 1.50922
BOB 8.07055
BRL 6.312773
BSD 1.163777
BTN 104.758321
BWP 15.48279
BYN 3.365776
BYR 22809.531139
BZD 2.340649
CAD 1.611051
CDF 2597.493612
CHF 0.938927
CLF 0.027431
CLP 1076.097443
CNY 8.227841
CNH 8.228277
COP 4460.75294
CRC 568.302563
CUC 1.163752
CUP 30.839417
CVE 110.149204
CZK 24.289713
DJF 206.821409
DKK 7.468003
DOP 74.611563
DZD 151.371482
EGP 55.249686
ERN 17.456274
ETB 180.916386
FJD 2.627056
FKP 0.872848
GBP 0.873489
GEL 3.136351
GGP 0.872848
GHS 13.296079
GIP 0.872848
GMD 84.953493
GNF 10116.36502
GTQ 8.914628
GYD 243.485079
HKD 9.053639
HNL 30.651777
HRK 7.535521
HTG 152.379808
HUF 384.442972
IDR 19425.807019
ILS 3.75211
IMP 0.872848
INR 104.919534
IQD 1524.597244
IRR 49008.486669
ISK 148.925001
JEP 0.872848
JMD 186.573861
JOD 0.825134
JPY 181.251401
KES 150.415155
KGS 101.769713
KHR 4659.122046
KMF 491.102923
KPW 1047.376277
KRW 1709.271735
KWD 0.357353
KYD 0.969885
KZT 594.694818
LAK 25239.574959
LBP 104218.886105
LKR 359.122467
LRD 205.414937
LSL 19.761725
LTL 3.436256
LVL 0.703942
LYD 6.324351
MAD 10.750998
MDL 19.732341
MGA 5189.566687
MKD 61.575268
MMK 2443.912111
MNT 4128.961065
MOP 9.326695
MRU 46.412208
MUR 53.672132
MVR 17.921437
MWK 2018.087126
MXN 21.224848
MYR 4.786529
MZN 74.375488
NAD 19.761725
NGN 1687.975205
NIO 42.82498
NOK 11.782974
NPR 167.613514
NZD 2.013983
OMR 0.447466
PAB 1.163782
PEN 3.914685
PGK 4.938808
PHP 68.915001
PKR 328.919419
PLN 4.236737
PYG 8003.58611
QAR 4.24204
RON 5.089434
RSD 117.39691
RUB 89.085229
RWF 1693.319872
SAR 4.367546
SBD 9.578365
SCR 17.319792
SDG 699.993726
SEK 10.936484
SGD 1.509985
SHP 0.873115
SLE 27.577665
SLL 24403.286774
SOS 663.904912
SRD 44.989471
STD 24087.308281
STN 24.474271
SVC 10.183295
SYP 12867.404641
SZL 19.756231
THB 37.121382
TJS 10.677875
TMT 4.084768
TND 3.418506
TOP 2.802035
TRY 49.542303
TTD 7.884745
TWD 36.286352
TZS 2851.191739
UAH 49.062922
UGX 4117.671236
USD 1.163752
UYU 45.462207
UZS 13954.330301
VES 296.235219
VND 30676.491878
VUV 141.795077
WST 3.245249
XAF 655.270952
XAG 0.020049
XAU 0.000278
XCD 3.145097
XCG 2.097495
XDR 0.81481
XOF 655.26814
XPF 119.331742
YER 277.612714
ZAR 19.80193
ZMK 10475.154659
ZMW 26.912823
ZWL 374.727537
  • RBGPF

    0.8500

    79.2

    +1.07%

  • RYCEF

    0.3100

    14.8

    +2.09%

  • CMSC

    -0.1300

    23.3

    -0.56%

  • RELX

    -0.8340

    39.486

    -2.11%

  • NGG

    -0.0100

    75.4

    -0.01%

  • GSK

    0.1600

    48.57

    +0.33%

  • VOD

    0.0050

    12.475

    +0.04%

  • AZN

    0.8550

    91.035

    +0.94%

  • SCS

    -0.0600

    16.08

    -0.37%

  • RIO

    -0.0400

    73.02

    -0.05%

  • BTI

    0.4650

    57.475

    +0.81%

  • JRI

    -0.1100

    13.68

    -0.8%

  • BP

    0.0450

    35.875

    +0.13%

  • BCC

    -0.6350

    72.415

    -0.88%

  • BCE

    -0.2700

    23.28

    -1.16%

  • CMSD

    -0.0550

    23.195

    -0.24%

Historic NASA asteroid mission set for perilous return
Historic NASA asteroid mission set for perilous return / Photo: Jason Connolly - AFP

Historic NASA asteroid mission set for perilous return

NASA's first mission to retrieve an asteroid sample and return it to US soil is expected to reach a perilous finale on Sunday with a descent into the Utah desert.

Text size:

Scientists hope the material -- possibly the most ever retrieved by such a mission -- will provide humanity with a better understanding on the formation of our solar system and how Earth became habitable.

The US space probe OSIRIS-REx, launched in 2016, scooped up the sample from an asteroid called Bennu almost three years ago.

Touchdown is scheduled for Sunday at around 9:00 am local time (1500 GMT), at a military testing site in the western state.

Some four hours earlier, at about 67,000 miles (108,000 kilometers) away from Earth, the Osiris-Rex probe will release the capsule containing the sample.

The final descent lasts 13 minutes: the capsule enters the atmosphere at a speed of around 27,000 miles (43,000 kilometers) per hour and reaches a maximum temperature of 5,000 degrees Fahrenheit (2,800 degrees Celsius), NASA said.

If all goes well, two successive parachutes will bring the capsule to a soft landing on the desert floor, where it will be retrieved by prepositioned staff.

Hitting the target area of 250 square miles (650 square kilometers) is like "throwing a dart across the length of a basketball court and hitting the bullseye," Rich Burns, OSIRIS-REx project manager at NASA, told a press conference last month.

The night before landing, controllers will have a final opportunity to abort if conditions are not correct. If so, the probe would then circle the Sun before its next attempt -- in 2025.

"Sample return missions are hard. There's a number of things that can go wrong," said Sandra Freund, Lockheed Martin's OSIRIS-REx program manager.

Teams have meticulously prepared for the capsule's return -- even a "hard landing scenario" according to Freund -- in order to preserve the asteroid material in its pristine form.

A final dress rehearsal took place in August, with a replica capsule dropped from a helicopter.

- Texas 'clean room' -

Once the capsule is on the ground, a team will check its condition before placing it in a net, which will be lifted by helicopter and taken to a temporary "clean room."

The next day, the sample will be flown to a highly specialized laboratory at NASA's Johnson Space Center in Houston, Texas.

Scientists will open the capsule and separate pieces of the rock and dust over a period of days.

Some of the sample will be for studies now, with the rest stored away for future generations equipped with better technology -- a practice first started during the Apollo missions to the Moon.

NASA is expected to unveil its first results during a press conference on October 11.

Obtaining the sample involved a high-risk operation in October 2020: the probe came into contact with the asteroid for a few seconds, and a blast of compressed nitrogen was emitted to raise the dust sample which was then captured.

Bennu had surprised scientists during sample collection: during the few seconds of contact with the surface, the probe's arm had sunk into the soil, revealing a much lower density than expected.

However it allowed NASA to take far more than the initial target of 60 grams -- the agency thinks the sample could be up to some 250 grams of material.

That mass would be the "largest from beyond the orbit of the moon" NASA program executive Melissa Morris said.

- 'Seeds of life' -

The first samples brought to Earth by asteroids were carried out by Japanese probes in 2010 and 2020, with the latter found to contain uracil, one of the building blocks of RNA.

The finding lent weight to a longstanding theory that life on Earth may have been seeded from outer space when asteroids crashed into our planet carrying fundamental elements.

Asteroids like Bennu and Ryugu, one of the asteroids studied by Japan, may look similar but "can be very, very different," according to Morris.

Asteroids are interesting because they are composed of the original materials of the solar system.

The cupful of rocks may hold "clues we believe to some of the deepest questions that we asked ourselves as humanity," said University of Arizona at Tucson's Dante Lauretta, principal investigator on OSIRIS-REx.

The samples may represent the "seeds of life that these asteroids delivered at the beginning of our planet, leading to this incredible biosphere, biological evolution and to us being here today."

Bennu, 500 meters in diameter, orbits the Sun and approaches Earth every six years.

There is a small chance (1 in 2,700) that it will collide with the Earth in 2182, which would have a catastrophic impact.

NASA has studied ways to divert an asteroid's trajectory, and a better understanding of Bennu's composition could therefore prove useful.

(G.Gruner--BBZ)