Berliner Boersenzeitung - Noxious fumes at night aren't a pollinating moth's delight

EUR -
AED 4.411435
AFN 78.078386
ALL 97.07552
AMD 454.542093
ANG 2.150259
AOA 1101.50809
ARS 1732.913594
AUD 1.718052
AWG 2.163677
AZN 2.043574
BAM 1.972497
BBD 2.416274
BDT 146.602231
BGN 2.017274
BHD 0.452849
BIF 3567.588995
BMD 1.201208
BND 1.519413
BOB 8.290073
BRL 6.229826
BSD 1.199665
BTN 110.038955
BWP 15.789795
BYN 3.418452
BYR 23543.684947
BZD 2.412845
CAD 1.63376
CDF 2690.707025
CHF 0.917249
CLF 0.02617
CLP 1033.339204
CNY 8.353985
CNH 8.336248
COP 4390.068409
CRC 596.050623
CUC 1.201208
CUP 31.832023
CVE 111.051689
CZK 24.232936
DJF 213.478741
DKK 7.46736
DOP 75.616307
DZD 155.205392
EGP 56.448414
ERN 18.018126
ETB 186.187906
FJD 2.638933
FKP 0.877051
GBP 0.869297
GEL 3.237237
GGP 0.877051
GHS 13.135219
GIP 0.877051
GMD 87.688465
GNF 10510.574089
GTQ 9.204998
GYD 250.992602
HKD 9.370687
HNL 31.783741
HRK 7.533018
HTG 157.333159
HUF 380.035926
IDR 20037.237461
ILS 3.731494
IMP 0.877051
INR 109.951712
IQD 1573.583025
IRR 50600.904699
ISK 145.190004
JEP 0.877051
JMD 188.48556
JOD 0.851652
JPY 183.298998
KES 155.232346
KGS 105.044506
KHR 4842.071233
KMF 494.897873
KPW 1081.110892
KRW 1721.84794
KWD 0.367606
KYD 0.999763
KZT 604.398846
LAK 25877.029287
LBP 102763.380234
LKR 371.477709
LRD 222.76398
LSL 19.171108
LTL 3.546856
LVL 0.7266
LYD 7.597696
MAD 10.876932
MDL 20.227227
MGA 5375.407418
MKD 61.583653
MMK 2522.596979
MNT 4282.469486
MOP 9.639984
MRU 47.904062
MUR 54.679498
MVR 18.559005
MWK 2085.298085
MXN 20.626308
MYR 4.720432
MZN 76.58897
NAD 19.170898
NGN 1691.505971
NIO 44.07866
NOK 11.530105
NPR 176.062865
NZD 1.993195
OMR 0.46188
PAB 1.199645
PEN 4.01984
PGK 5.113492
PHP 70.632762
PKR 336.03827
PLN 4.198602
PYG 8041.13641
QAR 4.373604
RON 5.096366
RSD 117.397709
RUB 91.581505
RWF 1744.15462
SAR 4.504569
SBD 9.702973
SCR 17.71804
SDG 722.516838
SEK 10.563835
SGD 1.515082
SHP 0.901217
SLE 29.169317
SLL 25188.738992
SOS 686.495825
SRD 46.002659
STD 24862.588974
STN 24.744893
SVC 10.496902
SYP 13284.854437
SZL 19.171442
THB 37.152673
TJS 11.205106
TMT 4.204229
TND 3.400017
TOP 2.892221
TRY 52.147222
TTD 8.158128
TWD 37.42401
TZS 3068.155426
UAH 51.497578
UGX 4283.29441
USD 1.201208
UYU 44.950513
UZS 14564.651736
VES 430.604568
VND 31392.380735
VUV 143.841479
WST 3.27845
XAF 661.573848
XAG 0.010701
XAU 0.000233
XCD 3.246325
XCG 2.162121
XDR 0.824936
XOF 663.673203
XPF 119.331742
YER 286.364313
ZAR 19.091016
ZMK 10812.316378
ZMW 23.68722
ZWL 386.78862
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    -0.8300

    82.4

    -1.01%

  • JRI

    -0.0500

    13.68

    -0.37%

  • RYCEF

    0.1500

    17.15

    +0.87%

  • CMSD

    -0.0630

    24.097

    -0.26%

  • VOD

    0.2700

    14.5

    +1.86%

  • CMSC

    0.0200

    23.8

    +0.08%

  • BCC

    -1.6600

    81.74

    -2.03%

  • NGG

    1.7300

    84.31

    +2.05%

  • BCE

    0.3700

    25.52

    +1.45%

  • RELX

    -1.1500

    38.36

    -3%

  • RIO

    2.4400

    92.91

    +2.63%

  • GSK

    0.4800

    50.8

    +0.94%

  • AZN

    1.3700

    95.6

    +1.43%

  • BP

    0.8600

    37.62

    +2.29%

  • BTI

    1.3500

    60.34

    +2.24%

Noxious fumes at night aren't a pollinating moth's delight
Noxious fumes at night aren't a pollinating moth's delight / Photo: Ron Wolf - University of Washington/AFP

Noxious fumes at night aren't a pollinating moth's delight

Certain plants have flowers that open only in the evening, and depend on nocturnal pollinators such as moths to thrive.

Text size:

But a new paper published in Science on Thursday finds an atmospheric pollutant that is much more prevalent at night drastically reduces the fluttering creatures' ability to track floral scents.

It adds to a growing understanding of how human activities, including not just air but also light and noise pollution, are negatively impacting the natural world.

"Our impacts on the environment are affecting human health, etc, that we tend to concentrate on, but they're also affecting ecosystem functioning through these plants and pollinators," senior author Jeff Riffell, a biology professor at the University of Washington, told AFP.

Riffell said the role of nitrate radicals (NO3) on flower scents hadn't been well studied, because the chemical is around at night and prior research focused on the impacts of pollution on daytime pollinators like bees.

Nitrate radicals form when nitrogen dioxide reacts in the atmosphere with ozone -- both of which come from burning fossil fuels, and have natural sources too.

Unlike nitrogen dioxide and ozone, however, nitrate radicals rapidly degrade in sunlight, making them virtually absent in daytime.

For their study, Riffell and colleagues chose the pale evening primrose (Oenothera pallida), a wildflower that grows in arid settings across the western United States.

Its white flowers emit a strong, piney scent that attracts the white-lined sphinx moth (Hyles lineata) and the tobacco hawk moth (Manduca sexta), species which use their powerful antennae to sniff out pollen from miles away.

- Pollinator crisis -

First, the team chemically analyzed the wildflower's scent to unravel its chemical recipe, revealing a complex bouquet of chemicals.

Next, they separated out the individual chemicals and exposed them one at a time to the moths, to determine exactly which ones were responsible for attracting the winged insects.

This revealed a subset of the chemicals, known as monoterpene compounds, were largely responsible for the scent, and further tests showed that nitrate radicals decimated the levels of these compounds.

Finally, the team carried out wind tunnel experiments involving the moths and the scent chemicals that they emitted at controlled levels from a fake flower.

"What we found is that the moths really were very sensitive to the flower scent and would kind of navigate upwind and try to feed from this artificial flower," said Rifell.

"But if we added NO3, then all of a sudden, for one species of moth, it totally eliminated their ability to recognize the flower. And for another species, it reduced their attraction to the flower by 50 percent."

The nitrate radicals were comparable to those found at night in a typical urban environment, modeled on Seattle. When the team ran the experiment with the pollutants typically present during the day, they saw far less of an impact.

Overall, the experiment revealed a strong impact on pollination activity, at a time when the world's pollinators are in crisis.

Around three-quarters of the more than 240,000 species of flowering plants depend on pollinators, and over 70 pollinator species are endangered or threatened, said Rifell.

The team also ran computer simulations to determine which parts of the world would be most likely to experience problems as a result of this effect.

Areas identified include much of Europe, the Middle East, Central and South Asia, and southern Africa.

"Outside of human activity, some regions accumulate more NO3 because of natural sources, geography and atmospheric circulation," said co-senior author Joel Thornton, a professor of atmospheric sciences.

"But human activity is producing more NO3 everywhere. We wanted to understand how those two sources — natural and human — combine and where levels could be so high that they could interfere with the ability of pollinators to find flowers."

(G.Gruner--BBZ)