Berliner Boersenzeitung - Ancient viruses responsible for our big brains and bodies: study

EUR -
AED 4.278661
AFN 76.972265
ALL 96.540713
AMD 443.663031
ANG 2.085508
AOA 1068.353542
ARS 1670.714664
AUD 1.756079
AWG 2.097095
AZN 1.970474
BAM 1.955612
BBD 2.345474
BDT 142.476293
BGN 1.955656
BHD 0.439209
BIF 3440.768991
BMD 1.165053
BND 1.508555
BOB 8.047226
BRL 6.31668
BSD 1.164488
BTN 104.703275
BWP 15.471512
BYN 3.347964
BYR 22835.037223
BZD 2.342065
CAD 1.608688
CDF 2600.397817
CHF 0.938578
CLF 0.027417
CLP 1075.580909
CNY 8.23704
CNH 8.2328
COP 4467.977946
CRC 568.845276
CUC 1.165053
CUP 30.873902
CVE 110.25534
CZK 24.258501
DJF 207.370051
DKK 7.469055
DOP 74.53283
DZD 151.520976
EGP 55.366828
ERN 17.475794
ETB 180.628723
FJD 2.628245
FKP 0.873824
GBP 0.874867
GEL 3.139789
GGP 0.873824
GHS 13.246669
GIP 0.873824
GMD 85.048888
GNF 10118.983106
GTQ 8.920257
GYD 243.635516
HKD 9.064467
HNL 30.671049
HRK 7.532648
HTG 152.445334
HUF 383.361244
IDR 19448.519649
ILS 3.735515
IMP 0.873824
INR 104.913948
IQD 1525.546692
IRR 49063.33837
ISK 148.823543
JEP 0.873824
JMD 186.392069
JOD 0.82602
JPY 181.306736
KES 150.583249
KGS 101.883998
KHR 4662.551453
KMF 491.652703
KPW 1048.547475
KRW 1708.981376
KWD 0.357764
KYD 0.970502
KZT 588.920817
LAK 25252.462287
LBP 104282.820234
LKR 359.193903
LRD 204.962921
LSL 19.736317
LTL 3.440098
LVL 0.704729
LYD 6.330391
MAD 10.755665
MDL 19.814009
MGA 5194.500278
MKD 61.568832
MMK 2446.644943
MNT 4133.578153
MOP 9.338262
MRU 46.438533
MUR 53.732545
MVR 17.936903
MWK 2019.305739
MXN 21.199973
MYR 4.791898
MZN 74.458323
NAD 19.736317
NGN 1690.43337
NIO 42.855693
NOK 11.792101
NPR 167.522884
NZD 2.016375
OMR 0.447959
PAB 1.164588
PEN 3.914423
PGK 4.941503
PHP 68.846439
PKR 326.474692
PLN 4.229655
PYG 8009.229496
QAR 4.244746
RON 5.08965
RSD 117.407045
RUB 89.299023
RWF 1694.337001
SAR 4.373105
SBD 9.589075
SCR 15.747417
SDG 700.782152
SEK 10.960066
SGD 1.51073
SHP 0.874091
SLE 27.666933
SLL 24430.575028
SOS 664.33609
SRD 45.004845
STD 24114.243202
STN 24.497538
SVC 10.189976
SYP 12881.793236
SZL 19.721103
THB 37.106778
TJS 10.68471
TMT 4.089336
TND 3.416115
TOP 2.805168
TRY 49.587915
TTD 7.89502
TWD 36.254936
TZS 2857.291024
UAH 48.888497
UGX 4119.586008
USD 1.165053
UYU 45.546205
UZS 13931.71953
VES 296.566475
VND 30710.794959
VUV 141.953636
WST 3.248878
XAF 655.893902
XAG 0.019938
XAU 0.000277
XCD 3.148613
XCG 2.098789
XDR 0.815722
XOF 655.893902
XPF 119.331742
YER 277.923824
ZAR 19.779921
ZMK 10486.868965
ZMW 26.92341
ZWL 375.146565
  • RBGPF

    0.0000

    78.35

    0%

  • CMSC

    -0.0500

    23.43

    -0.21%

  • SCS

    -0.0900

    16.14

    -0.56%

  • RIO

    -0.6700

    73.06

    -0.92%

  • RYCEF

    -0.0500

    14.62

    -0.34%

  • RELX

    -0.2200

    40.32

    -0.55%

  • CMSD

    -0.0700

    23.25

    -0.3%

  • NGG

    -0.5000

    75.41

    -0.66%

  • GSK

    -0.1600

    48.41

    -0.33%

  • AZN

    0.1500

    90.18

    +0.17%

  • BTI

    -1.0300

    57.01

    -1.81%

  • BCC

    -1.2100

    73.05

    -1.66%

  • BCE

    0.3300

    23.55

    +1.4%

  • VOD

    -0.1630

    12.47

    -1.31%

  • JRI

    0.0400

    13.79

    +0.29%

  • BP

    -1.4000

    35.83

    -3.91%

Ancient viruses responsible for our big brains and bodies: study
Ancient viruses responsible for our big brains and bodies: study / Photo: Peggy Assinck - Altos Labs-Cambridge Institute of Science/AFP

Ancient viruses responsible for our big brains and bodies: study

Ancient viruses that infected vertebrates hundreds of millions of years ago played a pivotal role in the evolution of our advanced brains and large bodies, a study said Thursday.

Text size:

The research, published in the journal Cell, examined the origins of myelin, an insulating layer of fatty tissue that forms around nerves and allows electrical impulses to travel faster.

According to the authors, a gene sequence acquired from retroviruses -- viruses that invade their host's DNA -- is crucial for myelin production, and that code is now found in modern mammals, amphibians and fish.

"The thing I find the most remarkable is that all of the diversity of modern vertebrates that we know of, and the size they've achieved: elephants, giraffes, anacondas, bullfrogs, condors wouldn't have happened," senior author and neuroscientist Robin Franklin of Altos Labs-Cambridge Institute of Science told AFP.

In new research led by Tanay Ghosh, a computational biologist and geneticist in Franklin's lab, analysts trawled through genome databases to try to discover the genetics that were likely associated with the cells that produce myelin.

Specifically, he was interested in exploring mysterious "noncoding regions" of the genome that have no obvious function and were once dismissed as junk, but are now recognized as having evolutionary importance.

Ghosh's search landed upon a particular sequence derived from an endogenous retrovirus, long lurking in our genes, which the team dubbed "RetroMyelin."

To test their finding, researchers carried out experiments in which they knocked down the RetroMyelin sequence in rat cells, and found they no longer produced a basic protein required for myelin formation.

- Faster reactions, bigger bodies -

Next, they searched for RetroMyelin-like sequences in the genomes of other species, finding similar code in jawed vertebrates -- fellow mammals, birds, fish, reptiles and amphibians -- but not in jawless vertebrates or invertebrates.

This led them to believe the sequence appeared in the tree of life around the same time as jaws, which first evolved around 360 million years ago in the Devonian period, called the Age of Fishes.

"There's always been an evolutionary pressure to make nerve fibers conduct electrical impulses quicker," said Franklin. "If they do that quicker, then you can act quicker," he added, which is useful for both predators trying to catch things, and prey trying to flee.

Myelin enables rapid impulse conduction without widening the diameter of nerve cells, allowing them to be packed closer together.

It also provides structural support, meaning nerves can grow longer, allowing for longer limbs.

In myelin's absence, invertebrates have found other ways to transmit signals faster -- giant squids for example have evolved wider nerve cells.

Finally, the team wanted to learn whether the retroviral infection happened once, to a single ancestor species, or whether it happened more than once.

- More discoveries await? -

To answer this, they used computational methods to analyze the RetroMyelin sequences of 22 jawed vertebrate species, finding the sequences were more similar within than between species.

The finding suggested multiple waves of infection led to the diversity of vertebrate species we see today, the team said.

"One tends to think of viruses as pathogens, or disease causing agents," said Franklin.

But the reality is more complicated, he said: at various points in history retroviruses have entered the genome and integrated themselves into a species' reproductive cells, allowing them to be passed down to future generations.

One of the most well known examples is the placenta -- one of the defining characteristics of most mammals -- which we acquired from a pathogen embedded in our genome in the deep past.

Ghosh said the myelin finding could be just another step in an emerging field. "There are still a lot of things to understand still in terms of biology about how these sequences are driving different processes of evolution," he said.

(O.Joost--BBZ)