Berliner Boersenzeitung - 3D genome extracted from 'freeze-dried' woolly mammoth

EUR -
AED 4.272323
AFN 76.901107
ALL 96.34399
AMD 443.867208
ANG 2.08242
AOA 1066.771894
ARS 1668.20484
AUD 1.756258
AWG 2.09399
AZN 1.976567
BAM 1.953034
BBD 2.343182
BDT 142.218617
BGN 1.952761
BHD 0.438569
BIF 3436.648432
BMD 1.163328
BND 1.50867
BOB 8.067611
BRL 6.323501
BSD 1.163353
BTN 104.720165
BWP 15.477151
BYN 3.36455
BYR 22801.223172
BZD 2.339797
CAD 1.608062
CDF 2596.547997
CHF 0.938672
CLF 0.02742
CLP 1075.670733
CNY 8.224839
CNH 8.22457
COP 4457.231965
CRC 568.095569
CUC 1.163328
CUP 30.828184
CVE 110.109084
CZK 24.283648
DJF 207.167538
DKK 7.468866
DOP 74.584388
DZD 151.309343
EGP 55.258182
ERN 17.449916
ETB 180.850491
FJD 2.626099
FKP 0.87253
GBP 0.87349
GEL 3.135191
GGP 0.87253
GHS 13.291237
GIP 0.87253
GMD 84.92322
GNF 10112.680313
GTQ 8.911381
GYD 243.396394
HKD 9.050992
HNL 30.640612
HRK 7.528124
HTG 152.324307
HUF 383.718951
IDR 19418.266183
ILS 3.747236
IMP 0.87253
INR 104.815303
IQD 1524.041937
IRR 48990.628525
ISK 148.78808
JEP 0.87253
JMD 186.505905
JOD 0.824836
JPY 181.307536
KES 150.3603
KGS 101.733296
KHR 4657.425043
KMF 490.924645
KPW 1046.994789
KRW 1708.078917
KWD 0.357293
KYD 0.969531
KZT 594.478211
LAK 25230.381892
LBP 104180.926226
LKR 358.991663
LRD 205.340118
LSL 19.754527
LTL 3.435004
LVL 0.703685
LYD 6.322048
MAD 10.747082
MDL 19.725154
MGA 5187.676479
MKD 61.55284
MMK 2443.021959
MNT 4127.457164
MOP 9.323298
MRU 46.395304
MUR 53.652889
MVR 17.913837
MWK 2017.352074
MXN 21.202066
MYR 4.784783
MZN 74.34859
NAD 19.754527
NGN 1688.476823
NIO 42.809381
NOK 11.789849
NPR 167.552464
NZD 2.016495
OMR 0.447293
PAB 1.163358
PEN 3.913259
PGK 4.937009
PHP 68.818402
PKR 328.799615
PLN 4.234408
PYG 8000.670946
QAR 4.240495
RON 5.088162
RSD 117.389042
RUB 89.045059
RWF 1692.70311
SAR 4.366162
SBD 9.574876
SCR 17.313484
SDG 699.740757
SEK 10.956657
SGD 1.509627
SHP 0.872797
SLE 27.567156
SLL 24394.39831
SOS 663.663097
SRD 44.973043
STD 24078.534907
STN 24.465357
SVC 10.179586
SYP 12862.717918
SZL 19.749035
THB 37.12993
TJS 10.673985
TMT 4.08328
TND 3.417261
TOP 2.801014
TRY 49.504016
TTD 7.881873
TWD 36.263833
TZS 2850.153307
UAH 49.045052
UGX 4116.171448
USD 1.163328
UYU 45.445648
UZS 13949.247684
VES 296.12732
VND 30665.318511
VUV 141.743431
WST 3.244067
XAF 655.032281
XAG 0.020154
XAU 0.000278
XCD 3.143951
XCG 2.096731
XDR 0.814514
XOF 655.02947
XPF 119.331742
YER 277.511843
ZAR 19.815368
ZMK 10471.343142
ZMW 26.903021
ZWL 374.591049
  • RIO

    0.0900

    73.15

    +0.12%

  • RYCEF

    0.3100

    14.8

    +2.09%

  • BCC

    -0.7750

    72.275

    -1.07%

  • CMSC

    -0.0300

    23.4

    -0.13%

  • JRI

    -0.0600

    13.73

    -0.44%

  • RELX

    -0.6550

    39.665

    -1.65%

  • NGG

    0.3700

    75.78

    +0.49%

  • SCS

    0.1400

    16.28

    +0.86%

  • BTI

    0.3200

    57.33

    +0.56%

  • VOD

    0.0550

    12.525

    +0.44%

  • GSK

    0.0400

    48.45

    +0.08%

  • BCE

    -0.3900

    23.16

    -1.68%

  • BP

    0.1600

    35.99

    +0.44%

  • RBGPF

    0.8500

    79.2

    +1.07%

  • CMSD

    0.0700

    23.32

    +0.3%

  • AZN

    -0.0100

    90.17

    -0.01%

3D genome extracted from 'freeze-dried' woolly mammoth
3D genome extracted from 'freeze-dried' woolly mammoth / Photo: Love Dalen - AFP

3D genome extracted from 'freeze-dried' woolly mammoth

About 52,000 years ago, the skinned hide of a Siberian woolly mammoth was exposed to conditions so frigid that it spontaneously freeze-dried, locking its DNA fragments into place.

Text size:

In a study published Thursday in the journal Cell, scientists reported using this remarkable sample to reconstruct the animal's genome in three dimensions -- a breakthrough that could yield important new insights about extinct species and even boost efforts to bring them back to life.

Until now, ancient DNA specimens have only been found in short, scrambled fragments, severely limiting the amount of information researchers could extract.

"Now we show that, at least under some circumstances, it's not just those snippets of that DNA that survive, but they survive in such a way that preserves the original arrangement," co-author Olga Dudchenko, a geneticist at Baylor College of Medicine, told AFP.

Understanding the 3D architecture of an organism's genome —- the complete set of its DNA -- is crucial for identifying which genes are active in specific tissues, revealing why brain cells think, heart cells beat, and immune cells fight disease.

It was long assumed that due to the rapid degradation of very small particles, such information would inevitably be lost to history.

But around a decade ago, an international team of scientists set out to find an ancient sample where the 3D organization of the DNA remained intact such that it could be fully reconstructed with a new analytical technique.

Their quest led them to an exceptionally well-preserved woolly mammoth sample, excavated in northeastern Siberia in 2018.

Whether the hirsute pachyderm -— a female with a distinctive mullet-style hairdo -- died naturally or was killed by humans is unknown. However, it does appear that early humans skinned her, leaving tissue around the head, neck, and left ear intact, according to Dudchenko.

- Woolly mammoth jerky -

The team hypothesizes that the skin cooled and dehydrated, transitioning into a glasslike state that trapped its molecules in place and preserved the shape of its chromosomes, or the threadlike structures that hold DNA strands.

Essentially, they had discovered a piece of freeze-dried woolly mammoth jerky.

To test the resilience of jerky, they subjected lab-made and store-bought beef jerky pieces to a series of tests simulating the kind of damage ancient samples might encounter over millennia.

"We fired a shotgun at it. We ran over it with a car. We had a former starting pitcher for the Houston Astros throw a fastball at it," said Cynthia Perez Estrada, co-author of the study and a researcher at Baylor College of Medicine and Rice University.

The jerky would break into tiny bits, shattering as dramatically as window glass at times. "But at the nano-scale, the chromosomes were intact, unchanged," said Perez Estrada in a statement.

One significant discovery from their research established that mammoths had 28 pairs of chromosomes. The finding aligns with the 28 chromosomal pairs found in elephants, the closest living relatives of mammoths, "but before this study, it was anybody's guess," said Dudchenko.

- 'Fossil chromosomes' -

The team's analysis also identified several "candidate" genes which might be responsible for what made woolly mammoths woolly -- including a gene responsible for long, thick eyelashes, and another associated with sparse sweat glands.

Erez Lieberman Aiden of Baylor College of Medicine, who co-led the team, told AFP that while the researchers' goal was not to bring mammoths back, the information they gleaned could be used for such efforts.

A Japanese team is looking at cloning woolly mammoths, while a group in the United States is aiming to create genetically "mammothized" elephants.

Within the skin, "96 percent of genes are basically in the same activity state as an elephant," said Aiden, meaning that scientists working on de-extinction could now focus on the remaining four percent.

The team now hopes that the benefit of their study will extend far beyond their special sample and open a new chapter in paleogenetics if other such "fossil chromosomes" can be found.

The Arctic permafrost remains a promising place to look, and it is also possible that mummification from ancient civilizations in warmer climates could preserve genomic structures too, according to Dudchenko.

(G.Gruner--BBZ)