Berliner Boersenzeitung - How to develop perfect battery systems for complex mobile solutions

EUR -
AED 4.343054
AFN 77.464136
ALL 96.578481
AMD 443.001294
ANG 2.116924
AOA 1084.432259
ARS 1696.425045
AUD 1.722632
AWG 2.13043
AZN 2.015092
BAM 1.955364
BBD 2.363473
BDT 143.548016
BGN 1.986001
BHD 0.442401
BIF 3475.425631
BMD 1.182587
BND 1.500966
BOB 8.109193
BRL 6.256361
BSD 1.173439
BTN 107.717999
BWP 16.277373
BYN 3.32206
BYR 23178.695489
BZD 2.360074
CAD 1.622687
CDF 2578.039008
CHF 0.928842
CLF 0.026073
CLP 1029.489324
CNY 8.24689
CNH 8.21806
COP 4228.657801
CRC 580.770597
CUC 1.182587
CUP 31.338542
CVE 110.240437
CZK 24.267271
DJF 208.973438
DKK 7.466899
DOP 73.933527
DZD 153.154875
EGP 55.703589
ERN 17.738798
ETB 182.791072
FJD 2.661179
FKP 0.866817
GBP 0.872725
GEL 3.18162
GGP 0.866817
GHS 12.79115
GIP 0.866817
GMD 86.329235
GNF 10278.709772
GTQ 9.006993
GYD 245.515296
HKD 9.221278
HNL 30.954103
HRK 7.533317
HTG 153.905708
HUF 382.153287
IDR 19840.785951
ILS 3.707232
IMP 0.866817
INR 108.414214
IQD 1537.357457
IRR 49816.456691
ISK 145.777895
JEP 0.866817
JMD 184.718842
JOD 0.838501
JPY 184.146504
KES 151.256298
KGS 103.416722
KHR 4722.947667
KMF 496.686746
KPW 1064.451335
KRW 1710.44627
KWD 0.362349
KYD 0.977982
KZT 590.738376
LAK 25359.349612
LBP 105085.885516
LKR 363.548997
LRD 217.091629
LSL 18.94048
LTL 3.491871
LVL 0.715335
LYD 7.466336
MAD 10.748905
MDL 19.97255
MGA 5308.817127
MKD 61.616271
MMK 2482.599361
MNT 4215.258085
MOP 9.4253
MRU 46.916546
MUR 54.292994
MVR 18.271409
MWK 2034.84661
MXN 20.533372
MYR 4.736855
MZN 75.57955
NAD 18.94048
NGN 1680.526824
NIO 43.180379
NOK 11.555294
NPR 172.348599
NZD 2.007958
OMR 0.454249
PAB 1.173539
PEN 3.936823
PGK 5.018882
PHP 69.733624
PKR 328.342141
PLN 4.208885
PYG 7847.251532
QAR 4.278347
RON 5.101724
RSD 117.373848
RUB 88.840205
RWF 1711.518652
SAR 4.433442
SBD 9.606873
SCR 16.856244
SDG 711.330129
SEK 10.584272
SGD 1.505082
SHP 0.887246
SLE 28.859447
SLL 24798.24684
SOS 669.450838
SRD 45.081425
STD 24477.153012
STN 24.494542
SVC 10.267712
SYP 13078.904017
SZL 18.935781
THB 36.920787
TJS 10.972155
TMT 4.139053
TND 3.416239
TOP 2.847384
TRY 51.246799
TTD 7.971224
TWD 37.116428
TZS 3004.130641
UAH 50.599026
UGX 4148.075755
USD 1.182587
UYU 44.440098
UZS 14242.826515
VES 416.584326
VND 31036.982812
VUV 141.323792
WST 3.258724
XAF 655.810877
XAG 0.011483
XAU 0.000237
XCD 3.196
XCG 2.114929
XDR 0.815618
XOF 655.810877
XPF 119.331742
YER 281.814608
ZAR 19.0597
ZMK 10644.701884
ZMW 23.02187
ZWL 380.792372
  • RBGPF

    -0.8100

    83.23

    -0.97%

  • SCS

    0.0200

    16.14

    +0.12%

  • RELX

    0.0600

    39.9

    +0.15%

  • CMSC

    0.1000

    23.75

    +0.42%

  • GSK

    0.5000

    49.15

    +1.02%

  • VOD

    0.2300

    14.17

    +1.62%

  • NGG

    1.3200

    81.5

    +1.62%

  • RYCEF

    0.3000

    17.12

    +1.75%

  • AZN

    1.2600

    92.95

    +1.36%

  • BTI

    0.9400

    59.16

    +1.59%

  • RIO

    3.1300

    90.43

    +3.46%

  • BCE

    0.4900

    25.2

    +1.94%

  • BP

    1.1000

    36.53

    +3.01%

  • CMSD

    0.0900

    24.13

    +0.37%

  • JRI

    0.0100

    13.68

    +0.07%

  • BCC

    -1.1800

    84.33

    -1.4%

How to develop perfect battery systems for complex mobile solutions
How to develop perfect battery systems for complex mobile solutions / Photo: © The modern ANSMANN AG battery pack manufacturing and testing site in Germany (Image source: @Ansmann AG)

How to develop perfect battery systems for complex mobile solutions

Using a 3-step-strategy ANSMANN defines the perfect battery pack and charger for each mobile device

Text size:

(Assamstadt/Bromma/Oslo/Lieusaint, 19-08-2025) Sometimes they combine supercaps with lithium hybrid storage systems; other times they search for the best battery cell for a specific task profile by using their BatteryLab and AI-systems. As mentioned in several publications before: Whatever it takes, Ansmann Group's battery system experts take a broad 3-step-approach, when it comes to finding the optimized battery and charging system for an application - like for example Driverless Transportation Systems (DTS) and Automated Guided Vehicle Systems (AGVs) or Autonomous Mobile Robots (AMRs).

++ Hybrid energy storage of supercaps and LiIon-Technology

How does it work to create a perfect customized battery pack? Step one: dare to think out of the box. A new hybrid storage system for AGVs and AMR , designed by ANSMANN and the IFL Karlsruhe (Institut für Fördertechnik und Logistiksysteme of KIT-Karlsruhe), p.ex. combines the best of two energy storage worlds: supercap capacitors and lithium-ion (LiIon) battery cells. This creates a highly efficient energy storage system, specifically for the needs of a logistic system with AGVs and AMRs. When the so-called double-layer capacitors and battery cells are skillfully combined, the new solution is 50 percent lighter, permanently available and has three times the service life of previous battery applications in AGVs.

The reason for this is, that supercaps can be quickly charged to 95 percent within 30 seconds at precisely located decentralised charging points. The vehicle is then ready for its next tour and can successively charge the conventional battery module. This supplies the vehicle with energy for longer distances, which cannot be covered by the supercap alone. The result: a perfect, extremely energy efficient hybrid energy storage system for mobile logistic solutions - which is almost half the size with up to 80 percent less battery cells and requires less capacity for identical applications than normal LiIon systems would need.

++ Cell preselection in the new Ansmann battery laboratory

Second, it is crucial for each mobile solution, to identify the best cells to be used in its battery pack. Therefor hundreds of different cells - over 300 round cell types, 60 prismatic and 40 others yet - are recorded in the ANSMANN cell database. For more than two years now, a team of ANSMANN experts is systematically searching for new cell types worldwide and tests them for unusual parameters.

The reason for the company's decision to invest in and systematically expand cell measurement and benchmarking in the form of a "battery laboratory" is clear: The number of cell sizes is constantly increasing. Same time, the number of cell chemistries and cell manufacturers is increasing. However, the cell manufacturers' data sheets often only reveal a limited part of the truth and their data was collected only under ideal conditions. So it doesn't tell anything for example about very important selection criteria like the behavior of a cell in its aging process.

Dark side: The use of unsuitable cells can have a significant negative impact on the performance and service life of a battery pack and the mobile solution it is used in. Whatever the critical selection criteria had been, be it current output capability, ability to push the systems acceleration or other: the performance of the battery pack is impaired. Through careful, preventive cell selection, complaining reasons are minimized and the warranty period for the unaffected runtime of the battery pack can be extended to reduce costs.

++ Third step is the use of a self-developed Artificial Intelligence (AI) Tool

And even more - step three: For deciding about the best cell forms for the specific solution and speeding up time-to-market of its customers, ANSMANN Industrial Solutions has developed it's own AI-tool, that helps to optimize the pack designs and formats more quickly.

For more than three decades, ANSMANN has been at the forefront as the world's leading expert in battery, accumulator, charging, drive and lighting technology. The more than 400 employees support their industrial customers in the complete development process of their mobile electronic devices and vehicles: from consulting through development, testing and distribution to cell and battery system recycling. More information: ANSMANN Industrial Solutions



Company description
The Ansmann Group is known in many European countries for more than 30 years for its particularly safe, technically pioneering and yet cost effective solutions for private and industrial applications. Those include medical equipment - as ANSMANN production is certified to the EN ISO 13485 medical standard, battery components for e-wheelchairs, e-bikes, battery-powered forestry as well as gardening powertools and various kinds of small e-vehicles and types of equipment.
The company operates a production facility and central logistics centre at its headquarters in Assamstadt and offices in France, Sweden, Norway and the UK. The ANSMANN UN test centre and a BatteryLab and test facility for cells and battery systems can run all necessary tests and checks to ensure the transportability, safety and recyclability of battery packs and solutions.

Company-Contact
Ansmann AG
Christopher Vogt
Industriestr. 10
97959 Assamstadt
+49 6294 4204-0
https://www.ansmann.de


Press
Comm:Motions - Text & PR
Miriam Leunissen
Hechtseestr 16
83022 Rosenheim
+49 174 3005749
https://www.comm-motions.com

(O.Joost--BBZ)