Berliner Boersenzeitung - 'Solids full of holes': Nobel-winning materials explained

EUR -
AED 4.343054
AFN 77.464136
ALL 96.578481
AMD 443.001294
ANG 2.116924
AOA 1084.432259
ARS 1696.425045
AUD 1.722632
AWG 2.13043
AZN 2.015092
BAM 1.955364
BBD 2.363473
BDT 143.548016
BGN 1.986001
BHD 0.442401
BIF 3475.425631
BMD 1.182587
BND 1.500966
BOB 8.109193
BRL 6.256361
BSD 1.173439
BTN 107.717999
BWP 16.277373
BYN 3.32206
BYR 23178.695489
BZD 2.360074
CAD 1.622687
CDF 2578.039008
CHF 0.922409
CLF 0.026073
CLP 1029.489324
CNY 8.24689
CNH 8.21806
COP 4228.657801
CRC 580.770597
CUC 1.182587
CUP 31.338542
CVE 110.240437
CZK 24.267271
DJF 208.973438
DKK 7.466899
DOP 73.933527
DZD 153.154875
EGP 55.703589
ERN 17.738798
ETB 182.791072
FJD 2.661179
FKP 0.870315
GBP 0.866681
GEL 3.18162
GGP 0.870315
GHS 12.79115
GIP 0.870315
GMD 86.329235
GNF 10278.709772
GTQ 9.006993
GYD 245.515296
HKD 9.221278
HNL 30.954103
HRK 7.533317
HTG 153.905708
HUF 382.153287
IDR 19840.785951
ILS 3.707232
IMP 0.870315
INR 108.316693
IQD 1537.357457
IRR 49816.456691
ISK 145.777895
JEP 0.870315
JMD 184.718842
JOD 0.838501
JPY 184.146504
KES 151.256298
KGS 103.416722
KHR 4722.947667
KMF 496.686746
KPW 1064.353704
KRW 1710.387141
KWD 0.362349
KYD 0.977982
KZT 590.738376
LAK 25359.349612
LBP 105085.885516
LKR 363.548997
LRD 217.091629
LSL 18.94048
LTL 3.491871
LVL 0.715335
LYD 7.466336
MAD 10.748905
MDL 19.97255
MGA 5308.817127
MKD 61.616271
MMK 2483.187819
MNT 4218.830116
MOP 9.4253
MRU 46.916546
MUR 54.292994
MVR 18.271409
MWK 2034.84661
MXN 20.533372
MYR 4.736855
MZN 75.57955
NAD 18.94048
NGN 1680.526824
NIO 43.180379
NOK 11.555294
NPR 172.348599
NZD 1.987207
OMR 0.454249
PAB 1.173539
PEN 3.936823
PGK 5.018882
PHP 69.733624
PKR 328.342141
PLN 4.208885
PYG 7847.251532
QAR 4.278347
RON 5.101724
RSD 117.373848
RUB 89.207823
RWF 1711.518652
SAR 4.433442
SBD 9.606873
SCR 16.856244
SDG 711.330129
SEK 10.584272
SGD 1.505082
SHP 0.887246
SLE 28.859447
SLL 24798.24684
SOS 669.450838
SRD 45.081425
STD 24477.153012
STN 24.494542
SVC 10.267712
SYP 13078.904017
SZL 18.935781
THB 36.920787
TJS 10.972155
TMT 4.139053
TND 3.416239
TOP 2.847384
TRY 51.246799
TTD 7.971224
TWD 37.116428
TZS 3004.130641
UAH 50.599026
UGX 4148.075755
USD 1.182587
UYU 44.440098
UZS 14242.826515
VES 416.584326
VND 31036.982812
VUV 141.661813
WST 3.258757
XAF 655.810877
XAG 0.011483
XAU 0.000237
XCD 3.196
XCG 2.114929
XDR 0.815618
XOF 655.810877
XPF 119.331742
YER 281.814608
ZAR 19.0597
ZMK 10644.701884
ZMW 23.02187
ZWL 380.792372
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    -0.8100

    83.23

    -0.97%

  • NGG

    1.3200

    81.5

    +1.62%

  • BCC

    -1.1800

    84.33

    -1.4%

  • GSK

    0.5000

    49.15

    +1.02%

  • CMSC

    0.1000

    23.75

    +0.42%

  • RELX

    0.0600

    39.9

    +0.15%

  • BCE

    0.4900

    25.2

    +1.94%

  • RYCEF

    0.3000

    17.12

    +1.75%

  • BTI

    0.9400

    59.16

    +1.59%

  • RIO

    3.1300

    90.43

    +3.46%

  • CMSD

    0.0900

    24.13

    +0.37%

  • AZN

    1.2600

    92.95

    +1.36%

  • JRI

    0.0100

    13.68

    +0.07%

  • VOD

    0.2300

    14.17

    +1.62%

  • BP

    1.1000

    36.53

    +3.01%

'Solids full of holes': Nobel-winning materials explained
'Solids full of holes': Nobel-winning materials explained / Photo: Jonathan Nackstrand - AFP

'Solids full of holes': Nobel-winning materials explained

The chemistry Nobel was awarded on Wednesday to three scientists who discovered a revolutionary way of making materials full of tiny holes that can do everything from sucking water out of the desert air to capturing climate-warming carbon dioxide.

Text size:

The particularly roomy molecular architecture, called metal-organic frameworks, has also allowed scientists to filter "forever chemicals" from water, smuggle drugs into bodies -- and even slow the ripening of fruit.

After Japan's Susumu Kitagawa, UK-born Richard Robson and American-Jordanian Omar Yaghi won their long-anticipated Nobel Prize, here is what you need to know about their discoveries.

- What are metal-organic frameworks? -

Imagine you turn on the hot water for your morning shower, David Fairen-Jimenez, a professor who studies metal-organic frameworks (MOFs) at the University of Cambridge, told AFP.

The mirror in your bathroom fogs up as water molecules collect on its flat surface -- but it can only absorb so much.

Now imagine this mirror was made of a material that was extremely porous -- full of tiny holes -- and these holes were "the size of a water molecule," Fairen-Jimenez said.

This material would be able to hold far more water -- or other gases -- than seems possible.

At the Nobel ceremony, this secret storage ability was compared to Hermione's magical handbag in Harry Potter.

The inside space of a couple of grams of a particular MOF "holds an area as big as a football pitch," the Nobels said in a statement.

Ross Forgan, a professor of materials chemistry at the University of Glasgow, told AFP to think of MOFs as "solids that are full of holes".

They could look essentially like table salt, but "they have a ridiculously high storage capacity inside them because they are hollow -- they can soak up other molecules like a sponge."

- What did the Nobel-winners do? -

In the 1980s, Robson taught his students at Australia's University of Melbourne about molecular structures using wooden balls that played the role of atoms, connected by rods representing chemical bonds.

One day this inspired him to try to link different kinds of molecules together. By 1989, he had drawn out a crystal structure similar to a diamond's -- except that it was full of massive holes.

French researcher David Farrusseng compared the structure of MOFs to the Eiffel Tower. "By interlocking all the iron beams -- horizontal, vertical, and diagonal -- we see cavities appear," he told AFP.

However Robson's holey structures were unstable, and it took years before anyone could figure out what to do with them.

In 1997, Kitagawa finally managed to show that a MOF could absorb and release methane and other gases.

It was Yaghi who coined the term metal-organic frameworks and demonstrated to the world just how much room there was in materials made from them.

- What can they do? -

Because these frameworks can be assembled in different ways -- somewhat like playing with Lego -- companies and labs around the world have been testing out their capabilities.

"This is a field that's generating incredible enthusiasm and is moving extremely fast," Thierry Loiseau of French research centre CNRS told AFP.

More than 100,000 different kinds have already been reported in scientific literature, according to a Cambridge University database.

"Every single month, there are 500 new MOFs," Fairen-Jimenez said.

He and Forgan agreed that likely the greatest impact MOFs will have on the world are in the areas of capturing carbon and delivering drugs.

Though much hyped, efforts to capture carbon dioxide -- the driver of human-caused global warming -- have so far failed to live up to their promise.

Forgan said he was once "a bit sceptical about carbon capture, but now we're finally refining (the MOFs) to the point where they are meeting all the industrial requirements".

Canadian chemical producer BASF says it is the first company to produce hundreds of tons of MOFs a year, for carbon capture efforts.

And Yaghi himself has demonstrated that a MOF material was able to harvest water vapour from the night air in the desert US state of Arizona.

Once the rising Sun heated up the material, his team collected the drinkable water.

(A.Lehmann--BBZ)