Berliner Boersenzeitung - 'Wetware': Scientists use human mini-brains to power computers

EUR -
AED 4.343054
AFN 77.464136
ALL 96.578481
AMD 443.001294
ANG 2.116924
AOA 1084.432259
ARS 1696.425045
AUD 1.722632
AWG 2.13043
AZN 2.015092
BAM 1.955364
BBD 2.363473
BDT 143.548016
BGN 1.986001
BHD 0.442401
BIF 3475.425631
BMD 1.182587
BND 1.500966
BOB 8.109193
BRL 6.256361
BSD 1.173439
BTN 107.717999
BWP 16.277373
BYN 3.32206
BYR 23178.695489
BZD 2.360074
CAD 1.622687
CDF 2578.039008
CHF 0.922409
CLF 0.026073
CLP 1029.489324
CNY 8.24689
CNH 8.21806
COP 4228.657801
CRC 580.770597
CUC 1.182587
CUP 31.338542
CVE 110.240437
CZK 24.267271
DJF 208.973438
DKK 7.466899
DOP 73.933527
DZD 153.154875
EGP 55.703589
ERN 17.738798
ETB 182.791072
FJD 2.661179
FKP 0.870315
GBP 0.866681
GEL 3.18162
GGP 0.870315
GHS 12.79115
GIP 0.870315
GMD 86.329235
GNF 10278.709772
GTQ 9.006993
GYD 245.515296
HKD 9.221278
HNL 30.954103
HRK 7.533317
HTG 153.905708
HUF 382.153287
IDR 19840.785951
ILS 3.707232
IMP 0.870315
INR 108.316693
IQD 1537.357457
IRR 49816.456691
ISK 145.777895
JEP 0.870315
JMD 184.718842
JOD 0.838501
JPY 184.146504
KES 151.256298
KGS 103.416722
KHR 4722.947667
KMF 496.686746
KPW 1064.353704
KRW 1710.387141
KWD 0.362349
KYD 0.977982
KZT 590.738376
LAK 25359.349612
LBP 105085.885516
LKR 363.548997
LRD 217.091629
LSL 18.94048
LTL 3.491871
LVL 0.715335
LYD 7.466336
MAD 10.748905
MDL 19.97255
MGA 5308.817127
MKD 61.616271
MMK 2483.187819
MNT 4218.830116
MOP 9.4253
MRU 46.916546
MUR 54.292994
MVR 18.271409
MWK 2034.84661
MXN 20.533372
MYR 4.736855
MZN 75.57955
NAD 18.94048
NGN 1680.526824
NIO 43.180379
NOK 11.555294
NPR 172.348599
NZD 1.987207
OMR 0.454249
PAB 1.173539
PEN 3.936823
PGK 5.018882
PHP 69.733624
PKR 328.342141
PLN 4.208885
PYG 7847.251532
QAR 4.278347
RON 5.101724
RSD 117.373848
RUB 89.207823
RWF 1711.518652
SAR 4.433442
SBD 9.606873
SCR 16.856244
SDG 711.330129
SEK 10.584272
SGD 1.505082
SHP 0.887246
SLE 28.859447
SLL 24798.24684
SOS 669.450838
SRD 45.081425
STD 24477.153012
STN 24.494542
SVC 10.267712
SYP 13078.904017
SZL 18.935781
THB 36.920787
TJS 10.972155
TMT 4.139053
TND 3.416239
TOP 2.847384
TRY 51.246799
TTD 7.971224
TWD 37.116428
TZS 3004.130641
UAH 50.599026
UGX 4148.075755
USD 1.182587
UYU 44.440098
UZS 14242.826515
VES 416.584326
VND 31036.982812
VUV 141.661813
WST 3.258757
XAF 655.810877
XAG 0.011483
XAU 0.000237
XCD 3.196
XCG 2.114929
XDR 0.815618
XOF 655.810877
XPF 119.331742
YER 281.814608
ZAR 19.0597
ZMK 10644.701884
ZMW 23.02187
ZWL 380.792372
  • SCS

    0.0200

    16.14

    +0.12%

  • RBGPF

    -0.8100

    83.23

    -0.97%

  • NGG

    1.3200

    81.5

    +1.62%

  • VOD

    0.2300

    14.17

    +1.62%

  • RELX

    0.0600

    39.9

    +0.15%

  • CMSC

    0.1000

    23.75

    +0.42%

  • GSK

    0.5000

    49.15

    +1.02%

  • BCE

    0.4900

    25.2

    +1.94%

  • RYCEF

    0.3000

    17.12

    +1.75%

  • BTI

    0.9400

    59.16

    +1.59%

  • RIO

    3.1300

    90.43

    +3.46%

  • BP

    1.1000

    36.53

    +3.01%

  • JRI

    0.0100

    13.68

    +0.07%

  • CMSD

    0.0900

    24.13

    +0.37%

  • BCC

    -1.1800

    84.33

    -1.4%

  • AZN

    1.2600

    92.95

    +1.36%

'Wetware': Scientists use human mini-brains to power computers
'Wetware': Scientists use human mini-brains to power computers / Photo: Fabrice COFFRINI - AFP

'Wetware': Scientists use human mini-brains to power computers

Inside a lab in the picturesque Swiss town of Vevey, a scientist gives tiny clumps of human brain cells the nutrient-rich fluid they need to stay alive.

Text size:

It is vital these mini-brains remain healthy, because they are serving as rudimentary computer processors -- and unlike your laptop, once they die, they cannot be rebooted.

This new field of research, called biocomputing or "wetware", aims to harness the evolutionarily honed yet still mysterious computing power of the human brain.

During a tour of Swiss start-up FinalSpark's lab, co-founder Fred Jordan told AFP he believes that processors using brain cells will one day replace the chips powering the artificial intelligence boom.

The supercomputers behind AI tools like ChatGPT currently use silicon semiconductors to simulate the neurons and networks of the human brain.

"Instead of trying to mimic, let's use the real thing," Jordan said.

Among other potential advantages, biocomputing could help address the skyrocketing energy demands of AI, which have already threatened climate emissions targets and led some tech giants to resort to nuclear power.

"Biological neurons are one million times more energy efficient than artificial neurons," Jordan said. They can also be endlessly reproduced in the lab, unlike the massively in-demand AI chips made by companies like behemoth Nvidia.

But for now, wetware's computing power is a very long way from competing with the hardware that runs the world.

And another question lingers: could these tiny brains become conscious?

- Brain power -

To make its "bioprocessors," FinalSpark first purchases stem cells. These cells, which were originally human skin cells from anonymous human donors, can become any cell in the body.

FinalSpark's scientists then turn them into neurons, which are collected into millimetre-wide clumps called brain organoids.

They are around the size of the brain of a fruit fly larvae, Jordan said.

Electrodes are attached to the organoids in the lab, which allow the scientists to "spy on their internal discussion," he explained.

The scientists can also stimulate the organoids with a small electric current. Whether they respond with a spike in activity -- or not -- is roughly the equivalent of the ones or zeroes in traditional computing.

Ten universities around the world are conducting experiments using FinalSpark's organoids -- the small company's website even has a live feed of the neurons at work.

Benjamin Ward-Cherrier, a researcher at the University of Bristol, used one of the organoids as the brain of a simple robot that managed to distinguish between different braille letters.

There are many challenges, including encoding the data in a way the organoid might understand -- then trying to interpret what the brain cells "spit out," he told AFP.

"Working with robots is very easy by comparison," Ward-Cherrier said with a laugh.

"There's also the fact that they are living cells -- and that means that they do die," he added.

Indeed, Ward-Cherrier was halfway through an experiment when the organoid died and his team had to start over. FinalSpark says the organoids live for up to six months.

At Johns Hopkins University in the United States, researcher Lena Smirnova is using similar organoids to study brain conditions such as autism and Alzheimer's disease in the hopes of finding new treatments.

Biocomputing is currently more "pie in the sky," unlike the "low-hanging fruit" use of the technology for biomedical research -- but that could change dramatically over the next 20 years, she told AFP.

- Do organoids dream of electric sheep? -

All the scientists AFP spoke to dismissed the idea that these tiny balls of cells in petri dishes were at risk of developing anything resembling consciousness.

Jordan acknowledged that "this is at the edge of philosophy," which is why FinalSpark collaborates with ethicists.

He also pointed out that the organoids -- which lack pain receptors -- have around 10,000 neurons, compared to a human brain's 100 billion.

However much about our brains, including how they create consciousness, remains a mystery.

That is why Ward-Cherrier hopes that -- beyond computer processing -- biocomputing will ultimately reveal more about how our brains work.

Back in the lab, Jordan opens the door of what looks like a big fridge containing 16 brain organoids in a tangle of tubes.

Lines suddenly start spiking on the screen next to the incubator, indicating significant neural activity.

The brain cells have no known way of sensing that their door has been opened, and the scientists have spent years trying to figure why this happens.

"We still don't understand how they detect the opening of the door," Jordan admitted.

(U.Gruber--BBZ)