Berliner Boersenzeitung - Direct impact or nuclear weapons? How to save Earth from an asteroid

EUR -
AED 4.277337
AFN 76.971308
ALL 96.539099
AMD 443.649903
ANG 2.084865
AOA 1068.023931
ARS 1670.170535
AUD 1.754436
AWG 2.096448
AZN 1.9742
BAM 1.955579
BBD 2.345435
BDT 142.473912
BGN 1.955579
BHD 0.43905
BIF 3440.711472
BMD 1.164693
BND 1.50853
BOB 8.047091
BRL 6.335467
BSD 1.164469
BTN 104.700177
BWP 15.471253
BYN 3.347922
BYR 22827.992243
BZD 2.342036
CAD 1.6108
CDF 2599.595791
CHF 0.937064
CLF 0.02737
CLP 1073.707555
CNY 8.234499
CNH 8.234698
COP 4424.200415
CRC 568.835767
CUC 1.164693
CUP 30.864377
CVE 110.25255
CZK 24.206977
DJF 207.366584
DKK 7.473932
DOP 74.531584
DZD 151.064942
EGP 55.309188
ERN 17.470402
ETB 180.625704
FJD 2.632731
FKP 0.873164
GBP 0.874723
GEL 3.138845
GGP 0.873164
GHS 13.246504
GIP 0.873164
GMD 85.022604
GNF 10118.85737
GTQ 8.919993
GYD 243.632489
HKD 9.06683
HNL 30.670537
HRK 7.536379
HTG 152.442786
HUF 381.91584
IDR 19438.210099
ILS 3.76861
IMP 0.873164
INR 104.758942
IQD 1525.527736
IRR 49048.181833
ISK 149.057092
JEP 0.873164
JMD 186.388953
JOD 0.825787
JPY 180.84192
KES 150.63299
KGS 101.852136
KHR 4662.473509
KMF 491.500098
KPW 1048.223551
KRW 1716.537243
KWD 0.357526
KYD 0.97049
KZT 588.913499
LAK 25252.148505
LBP 104281.524439
LKR 359.18944
LRD 204.956856
LSL 19.736071
LTL 3.439037
LVL 0.704511
LYD 6.330285
MAD 10.755485
MDL 19.813763
MGA 5194.413442
MKD 61.63304
MMK 2445.387464
MNT 4131.602963
MOP 9.338146
MRU 46.437756
MUR 53.657551
MVR 17.951252
MWK 2019.271982
MXN 21.202091
MYR 4.788046
MZN 74.435387
NAD 19.736071
NGN 1688.89839
NIO 42.855161
NOK 11.772943
NPR 167.520083
NZD 2.015268
OMR 0.44693
PAB 1.164568
PEN 3.914358
PGK 4.941442
PHP 68.676135
PKR 326.469235
PLN 4.229415
PYG 8009.095606
QAR 4.244621
RON 5.092734
RSD 117.386745
RUB 89.464862
RWF 1694.308677
SAR 4.371215
SBD 9.586117
SCR 15.776956
SDG 700.559902
SEK 10.953447
SGD 1.508575
SHP 0.873822
SLE 27.6056
SLL 24423.037799
SOS 664.324984
SRD 44.990951
STD 24106.803566
STN 24.497234
SVC 10.189849
SYP 12877.826534
SZL 19.720773
THB 37.124621
TJS 10.684394
TMT 4.088074
TND 3.416014
TOP 2.804302
TRY 49.551599
TTD 7.894109
TWD 36.442065
TZS 2841.579126
UAH 48.88768
UGX 4119.534819
USD 1.164693
UYU 45.544857
UZS 13931.426851
VES 296.474979
VND 30701.32018
VUV 141.34849
WST 3.247877
XAF 655.882937
XAG 0.019966
XAU 0.000277
XCD 3.147643
XCG 2.098763
XDR 0.815708
XOF 655.882937
XPF 119.331742
YER 277.837661
ZAR 19.726999
ZMK 10483.641498
ZMW 26.92296
ZWL 375.030826
  • RBGPF

    0.0000

    78.35

    0%

  • SCS

    -0.0900

    16.14

    -0.56%

  • CMSD

    -0.0700

    23.25

    -0.3%

  • RYCEF

    -0.0500

    14.62

    -0.34%

  • CMSC

    -0.0500

    23.43

    -0.21%

  • NGG

    -0.5000

    75.41

    -0.66%

  • GSK

    -0.1600

    48.41

    -0.33%

  • VOD

    -0.1630

    12.47

    -1.31%

  • BTI

    -1.0300

    57.01

    -1.81%

  • RIO

    -0.6700

    73.06

    -0.92%

  • RELX

    -0.2200

    40.32

    -0.55%

  • BCE

    0.3300

    23.55

    +1.4%

  • JRI

    0.0400

    13.79

    +0.29%

  • BCC

    -1.2100

    73.05

    -1.66%

  • BP

    -1.4000

    35.83

    -3.91%

  • AZN

    0.1500

    90.18

    +0.17%

Direct impact or nuclear weapons? How to save Earth from an asteroid
Direct impact or nuclear weapons? How to save Earth from an asteroid / Photo: Sophie RAMIS - AFP

Direct impact or nuclear weapons? How to save Earth from an asteroid

NASA's DART mission to test deflecting an asteroid using "kinetic impact" with a spaceship is just one way to defend planet Earth from an approaching object -- and for now, the only method possible with current technology.

Text size:

The operation is like playing billiards in space, using Newton's laws of motion to guide us.

If an asteroid threat to Earth were real, a mission might need to be launched a year or two in advance to take on a small asteroid, or decades ahead of projected impact for larger objects hundreds of kilometers in diameter that could prove catastrophic to the planet.

Or, a larger object might require hits with multiple spacecraft.

"This demonstration will start to add tools to our toolbox of methods that could be used in the future," said Lindley Johnson, NASA's planetary defense office, in a recent briefing.

Other proposed ideas have included a futuristic-sounding "gravity tractor," or a mission to blow up the hypothetical object with a nuclear weapon -- the method preferred by Hollywood.

- Gravity tractor -

Should an approaching object be detected early -- years or decades before it would hit Earth -- a spaceship could be sent to fly alongside it for long enough to divert its path via using the ship's gravitational pull, creating a so-called gravity tractor.

This method "has the virtue that the method of moving the asteroid is totally well understood -- it's gravity and we know how gravity works," Tom Statler, a DART program scientist at NASA said at a briefing last November when DART launched.

The mass of the spacecraft however would be a limiting factor -- and gravity tractors would be less effective for asteroids more than 500 meters in diameter, which are the very ones that pose the greatest threat.

In a 2017 paper, NASA engineers proposed a way to overcome this snag: by having the spacecraft scoop material from the asteroid to enhance its own mass, and thus, gravity.

But none of these concepts have been tried, and would need decades to build, launch and test.

- Nuclear detonation -

Another option: launching nuclear explosives to redirect or destroy an asteroid.

"This may be the only strategy that would be effective for the largest and most dangerous 'planet-killer' asteroids (more than one kilometer in diameter)," a NASA article on the subject says, adding such a strike might be useful as a "last resort" in case the other methods fail.

But these weapons are geopolitically controversial and technically banned from use in outer space.

Lori Glaze, NASA's planetary science division director said in a 2021 briefing that the agency believed the best way to deploy the weapons would be at a distance from an asteroid, in order to impart force on the object without blowing it into smaller pieces that could then multiply the threat to Earth.

A 2018 paper published in the "Journal of Experimental and Theoretical Physics" by Russian scientists looked at the direct detonation scenario.

E. Yu. Aristova and colleagues built miniature asteroid models and blasted them with lasers. Their experiments showed that blowing up a 200-meter asteroid would require a bomb 200 times as powerful as the one that exploded over Hiroshima in 1945.

They also said it would be most effective to drill into the asteroid, bury the bomb, then blow it up -- just like in the movie Armageddon.

(Y.Berger--BBZ)