Berliner Boersenzeitung - Quantum entanglement: the 'spooky' science behind physics Nobel

EUR -
AED 4.35745
AFN 77.716132
ALL 96.672648
AMD 443.429494
ANG 2.123942
AOA 1088.026572
ARS 1695.052999
AUD 1.714878
AWG 2.137492
AZN 2.018143
BAM 1.957263
BBD 2.365788
BDT 143.687374
BGN 1.992584
BHD 0.442833
BIF 3478.799614
BMD 1.186507
BND 1.502423
BOB 8.1171
BRL 6.293705
BSD 1.174583
BTN 107.822118
BWP 16.293244
BYN 3.325313
BYR 23255.530235
BZD 2.362385
CAD 1.623912
CDF 2586.584313
CHF 0.921993
CLF 0.025884
CLP 1022.054308
CNY 8.274224
CNH 8.248126
COP 4242.674865
CRC 581.336867
CUC 1.186507
CUP 31.442426
CVE 110.347925
CZK 24.262045
DJF 209.177194
DKK 7.468004
DOP 74.005614
DZD 153.304853
EGP 55.343057
ERN 17.7976
ETB 182.969299
FJD 2.669991
FKP 0.86969
GBP 0.868208
GEL 3.191928
GGP 0.86969
GHS 12.803622
GIP 0.86969
GMD 86.614852
GNF 10288.775241
GTQ 9.015699
GYD 245.754682
HKD 9.247129
HNL 30.984284
HRK 7.531968
HTG 154.055121
HUF 381.911543
IDR 19904.835471
ILS 3.71952
IMP 0.86969
INR 108.63975
IQD 1538.856431
IRR 49981.592593
ISK 145.79734
JEP 0.86969
JMD 184.898949
JOD 0.841251
JPY 182.891727
KES 151.417916
KGS 103.75953
KHR 4727.532759
KMF 498.332658
KPW 1067.97987
KRW 1710.687469
KWD 0.363546
KYD 0.978936
KZT 591.316859
LAK 25384.182861
LBP 105188.791311
LKR 363.905004
LRD 217.296886
LSL 18.959027
LTL 3.503446
LVL 0.717706
LYD 7.473616
MAD 10.759386
MDL 19.992108
MGA 5313.993399
MKD 61.677129
MMK 2490.828896
MNT 4229.231187
MOP 9.43449
MRU 46.96249
MUR 54.472944
MVR 18.331255
MWK 2036.830652
MXN 20.607126
MYR 4.711027
MZN 75.829212
NAD 18.959027
NGN 1670.969013
NIO 43.222663
NOK 11.547023
NPR 172.516644
NZD 1.989629
OMR 0.454692
PAB 1.174683
PEN 3.940661
PGK 5.023796
PHP 69.937414
PKR 328.662286
PLN 4.212876
PYG 7854.90286
QAR 4.282518
RON 5.124995
RSD 117.489777
RUB 88.861996
RWF 1713.187439
SAR 4.449167
SBD 9.638718
SCR 16.924364
SDG 713.686021
SEK 10.562733
SGD 1.505398
SHP 0.890187
SLE 28.933502
SLL 24880.450216
SOS 670.103574
SRD 45.23083
STD 24558.291997
STN 24.518529
SVC 10.277724
SYP 13122.2591
SZL 18.954244
THB 36.927654
TJS 10.982622
TMT 4.152773
TND 3.419541
TOP 2.856823
TRY 51.486202
TTD 7.97903
TWD 37.302935
TZS 3014.088736
UAH 50.648362
UGX 4152.120266
USD 1.186507
UYU 44.482491
UZS 14256.894113
VES 417.965256
VND 31078.761797
VUV 141.792264
WST 3.269526
XAF 656.450314
XAG 0.010921
XAU 0.000234
XCD 3.206593
XCG 2.116991
XDR 0.816414
XOF 656.450314
XPF 119.331742
YER 282.769152
ZAR 19.077307
ZMK 10679.987975
ZMW 23.044415
ZWL 382.054655
  • RIO

    3.1300

    90.43

    +3.46%

  • BTI

    0.9400

    59.16

    +1.59%

  • BP

    1.1000

    36.53

    +3.01%

  • SCS

    0.0200

    16.14

    +0.12%

  • GSK

    0.5000

    49.15

    +1.02%

  • CMSC

    0.1000

    23.75

    +0.42%

  • NGG

    1.3200

    81.5

    +1.62%

  • CMSD

    0.0900

    24.13

    +0.37%

  • BCC

    -1.1800

    84.33

    -1.4%

  • BCE

    0.4900

    25.2

    +1.94%

  • AZN

    1.2600

    92.95

    +1.36%

  • JRI

    0.0100

    13.68

    +0.07%

  • RYCEF

    0.3000

    17.12

    +1.75%

  • RBGPF

    -0.8100

    83.23

    -0.97%

  • VOD

    0.2300

    14.17

    +1.62%

  • RELX

    0.0600

    39.9

    +0.15%

Quantum entanglement: the 'spooky' science behind physics Nobel
Quantum entanglement: the 'spooky' science behind physics Nobel / Photo: HERBERT PFARRHOFER - APA/AFP/File

Quantum entanglement: the 'spooky' science behind physics Nobel

This year's physics Nobel prize was awarded Tuesday to three men for their work on a phenomenon called quantum entanglement, which is so bizarre and unlikely that Albert Einstein was sceptical, famously calling it "spooky".

Text size:

So how exactly does it work?

Even people with degrees in physics struggle to understand it -- and some who do still find parts "hard to swallow," said Chris Phillips, a physicist at Imperial College London.

To explain the phenomenon he used the example of a photon -- "a single unit of light" -- though the theory is believed to hold true for other particles.

If a photon is put through a "special crystal", it can be split into separate photons, he told AFP.

"They're different colours from the one you started with," Phillips said, "but because they started from one photon, they are entangled".

This is where it gets weird. If you measure one photon it instantly affects the other -- no matter how far you separate them.

This is not supposed to happen. Einstein's theory of relativity says nothing can travel faster than the speed of light.

And they are inextricably bound together. When you observe the first photon, there are even odds that it will show itself as "either up or down", Phillips said. But if it is up, then its twin is instantly forced down, or vice versa.

- New way to kill Schroedinger's cat -

He extended the famous quantum thought experiment of Schroedinger's cat, in which a hypothetical animal locked inside a box with a flask of poison remains simultaneously alive and dead -- until the moment the box is opened.

For quantum entanglement, if you have two cats in two boxes, by opening one you would "kill that cat and instantaneously -- on the other side of the universe -- the other cat has been killed," Phillips said.

Phillips has seen this "extremely strange thing" first hand in his laboratory, where he has two beams of photons set up.

"I can put my hand in one beam and something happens to the other beam on the other side of the room instantaneously -- I see a needle flick," he said.

"That would still be true if my laboratory was millions of miles across."

It was the fact that this occurs instantly that bothered Einstein, who dismissed this element of quantum entanglement -- called non-locality -- as "spooky action at a distance" in 1935.

He instead believed that "hidden variables" must somehow be behind what was happening.

In 1964, influential physicist John Stewart Bell found a way to measure whether there were in fact hidden variables inside quantum particles.

Two decades later, French physicist Alain Aspect, who won the Nobel on Tuesday, and his team were among the first able to test Bell's theory in a laboratory.

By testing its limits, they found that "quantum mechanics resists all possible attacks," Aspect said in an interview published by the Nobel Foundation after his win on Tuesday.

- 'Totally crazy' -

In doing so, Aspect proved Einstein wrong. But he was magnanimous to history's greatest physicist.

"I like to say that Einstein's owes a great, great merit in raising the question," Aspect said, adding that "non-locality does not allow you to send a useful message faster than light".

Even Aspect finds it weird to have accepted the idea of something "totally crazy" like non-locality into "my mental images," he said.

The other physics Nobel winners, Austria's Anton Zeilinger and John Clauser of the US, also tested Bell's theory, ruling out loopholes and helping pave the way for what has been called the "second quantum revolution".

Discoveries by Zeilinger, dubbed the "quantum pope", have shown the potential for quantum entanglement to be used in encryption, quantum teleportation and more.

Phillips from Imperial College London has developed a prototype the size of a hi-fi sound system that uses quantum entanglement to diagnose breast cancer.

"We have to be humble in the face of physics," Phillips said, adding that it was the same as any another aspect of nature.

"It just is."

(B.Hartmann--BBZ)