Berliner Boersenzeitung - The Nobel winners who helped prove quantum 'spooky action'

EUR -
AED 4.35745
AFN 77.716132
ALL 96.672648
AMD 443.429494
ANG 2.123942
AOA 1088.026572
ARS 1695.052999
AUD 1.714878
AWG 2.137492
AZN 2.018143
BAM 1.957263
BBD 2.365788
BDT 143.687374
BGN 1.992584
BHD 0.442833
BIF 3478.799614
BMD 1.186507
BND 1.502423
BOB 8.1171
BRL 6.293705
BSD 1.174583
BTN 107.822118
BWP 16.293244
BYN 3.325313
BYR 23255.530235
BZD 2.362385
CAD 1.623912
CDF 2586.584313
CHF 0.921993
CLF 0.025884
CLP 1022.054308
CNY 8.274224
CNH 8.248126
COP 4242.674865
CRC 581.336867
CUC 1.186507
CUP 31.442426
CVE 110.347925
CZK 24.262045
DJF 209.177194
DKK 7.468004
DOP 74.005614
DZD 153.304853
EGP 55.343057
ERN 17.7976
ETB 182.969299
FJD 2.669991
FKP 0.86969
GBP 0.868208
GEL 3.191928
GGP 0.86969
GHS 12.803622
GIP 0.86969
GMD 86.614852
GNF 10288.775241
GTQ 9.015699
GYD 245.754682
HKD 9.247129
HNL 30.984284
HRK 7.531968
HTG 154.055121
HUF 381.911543
IDR 19904.835471
ILS 3.71952
IMP 0.86969
INR 108.63975
IQD 1538.856431
IRR 49981.592593
ISK 145.79734
JEP 0.86969
JMD 184.898949
JOD 0.841251
JPY 182.891727
KES 151.417916
KGS 103.75953
KHR 4727.532759
KMF 498.332658
KPW 1067.97987
KRW 1710.687469
KWD 0.363546
KYD 0.978936
KZT 591.316859
LAK 25384.182861
LBP 105188.791311
LKR 363.905004
LRD 217.296886
LSL 18.959027
LTL 3.503446
LVL 0.717706
LYD 7.473616
MAD 10.759386
MDL 19.992108
MGA 5313.993399
MKD 61.677129
MMK 2490.828896
MNT 4229.231187
MOP 9.43449
MRU 46.96249
MUR 54.472944
MVR 18.331255
MWK 2036.830652
MXN 20.607126
MYR 4.711027
MZN 75.829212
NAD 18.959027
NGN 1670.969013
NIO 43.222663
NOK 11.547023
NPR 172.516644
NZD 1.989629
OMR 0.454692
PAB 1.174683
PEN 3.940661
PGK 5.023796
PHP 69.937414
PKR 328.662286
PLN 4.212876
PYG 7854.90286
QAR 4.282518
RON 5.124995
RSD 117.489777
RUB 88.861996
RWF 1713.187439
SAR 4.449167
SBD 9.638718
SCR 16.924364
SDG 713.686021
SEK 10.562733
SGD 1.505398
SHP 0.890187
SLE 28.933502
SLL 24880.450216
SOS 670.103574
SRD 45.23083
STD 24558.291997
STN 24.518529
SVC 10.277724
SYP 13122.2591
SZL 18.954244
THB 36.927654
TJS 10.982622
TMT 4.152773
TND 3.419541
TOP 2.856823
TRY 51.486202
TTD 7.97903
TWD 37.302935
TZS 3014.088736
UAH 50.648362
UGX 4152.120266
USD 1.186507
UYU 44.482491
UZS 14256.894113
VES 417.965256
VND 31078.761797
VUV 141.792264
WST 3.269526
XAF 656.450314
XAG 0.010921
XAU 0.000234
XCD 3.206593
XCG 2.116991
XDR 0.816414
XOF 656.450314
XPF 119.331742
YER 282.769152
ZAR 19.077307
ZMK 10679.987975
ZMW 23.044415
ZWL 382.054655
  • RIO

    3.1300

    90.43

    +3.46%

  • BTI

    0.9400

    59.16

    +1.59%

  • BP

    1.1000

    36.53

    +3.01%

  • SCS

    0.0200

    16.14

    +0.12%

  • GSK

    0.5000

    49.15

    +1.02%

  • CMSC

    0.1000

    23.75

    +0.42%

  • NGG

    1.3200

    81.5

    +1.62%

  • CMSD

    0.0900

    24.13

    +0.37%

  • BCC

    -1.1800

    84.33

    -1.4%

  • BCE

    0.4900

    25.2

    +1.94%

  • AZN

    1.2600

    92.95

    +1.36%

  • JRI

    0.0100

    13.68

    +0.07%

  • RYCEF

    0.3000

    17.12

    +1.75%

  • RBGPF

    -0.8100

    83.23

    -0.97%

  • VOD

    0.2300

    14.17

    +1.62%

  • RELX

    0.0600

    39.9

    +0.15%

The Nobel winners who helped prove quantum 'spooky action'
The Nobel winners who helped prove quantum 'spooky action' / Photo: Jonathan NACKSTRAND - AFP

The Nobel winners who helped prove quantum 'spooky action'

Physicists Alain Aspect, John Clauser and Anton Zeilinger developed experimental tools that helped prove quantum entanglement -- a phenomenon Albert Einstein famously dismissed as "spooky action at a distance" -- is real, paving the way for its use in powerful computers.

Text size:

Here are mini biographies of the three scientists.

- John Clauser -

Born in 1942, John Francis Clauser's earliest memories were of gaping in wonder at the equipment in the lab of his father, who created the aeronautics department for Johns Hopkins, he told the American Institute of Physics in a 2002 oral history.

An electronics buff who built some of the first computer-driven video games at high school, Clauser opted for physics at college.

In the mid-1960s, he grew interested in the ideas of quantum mechanics pioneer John Bell, who strove to better understand entanglement -- when two particles behave as one and can affect each other, even at vast distances.

"I thought this is one of the most amazing papers I've ever read in my own life, and I kept wondering, gee, where's the experimental evidence?" Clauser told PBS in 2018.

Clauser believed he could test Bell's ideas in a laboratory, but was met with widespread scorn by leading physicists of the time.

He proposed the test independently of his thesis work on radio astronomy, and carried it out with collaborators in 1972 while at UC Berkeley.

By shining lasers at calcium atoms to emit entangled photons and measuring their properties, he was able to prove with hard data that what had defied the imagination even of the great Einstein -- was true.

- Alain Aspect -

Like Clauser, Frenchman Alain Aspect was seduced by the "limpid clarity" of Bell's theorem.

"Quantum strangeness has dominated my whole life as a physicist," he told AFP in a 2010 interview.

As a doctoral student, Aspect built on the work of Clauser, refining the experiment to eliminate possible loopholes in its design -- publishing his work in 1982.

The son of a teacher, Aspect was born in 1947 in a village in Gascony, and is currently a professor at Institut d'Optique Graduate School (Augustin Fresnel chair), in University Paris-Saclay, and at Ecole Polytechnique.

But his interest in the quantum realm stemmed from a period in his life spent away from academia -- he had gone to Cameroon to complete three years of voluntary service as a teacher.

During his free time, he came across a book written by Claude Cohen-Tannoudji on the subject (Cohen-Tannoudji won the Nobel in 1997), which in turn led him to Bell.

In a phone interview with the Nobel Foundation on Tuesday, Aspect emphasized the international makeup of his co-winners -- an American and an Austrian -- was an important signal in the face of rising nationalism around the world.

"It's important that scientists keep their international community at a time when... nationalism is taking over in many countries," he said.

- Anton Zeilinger -

Nicknamed the "quantum pope", the physicist Anton Zeilinger, born in 1945 in Ried im Innkreis in Austria, became one of the most famous scientists in his country by succeeding for the first time in 1997 in quantum teleportation of light particles.

A success quickly compared to the "teleportation" of the television series "Star Trek."

Using the properties of quantum entanglement for cryptography, Professor Zeilinger encrypted the first banking transaction by this means in Vienna in 2004.

In 2007, his team created entangled pairs of photons and fired one of each pair over 144 kilometers (89 miles) between the Canary Islands La Palma and Tenerife, to generate a quantum cryptographic key.

His fame comes in part from his tireless didactic talents: always keen to popularize his knowledge to the general public, he even initiated the Dalai Lama in 2012 with infectious enthusiasm.

Attached to the University of Vienna, Zeilinger corresponds in all respects to the image of the scientist: gray hair, a full beard, and small round glasses.

He had already received countless awards and did not really believe that he would one day win the Nobel. "There are so many other candidates," he said a few years ago to the Austria Press Agency

(P.Werner--BBZ)