Berliner Boersenzeitung - The surprising climate power of penguin poo

EUR -
AED 4.277193
AFN 76.278264
ALL 96.384702
AMD 444.254789
ANG 2.084488
AOA 1067.831058
ARS 1669.875407
AUD 1.753964
AWG 2.096069
AZN 1.984244
BAM 1.954822
BBD 2.344528
BDT 142.396172
BGN 1.956308
BHD 0.43899
BIF 3455.020152
BMD 1.164483
BND 1.507939
BOB 8.043943
BRL 6.350744
BSD 1.164018
BTN 104.659215
BWP 15.4652
BYN 3.346626
BYR 22823.860795
BZD 2.341119
CAD 1.610404
CDF 2599.125794
CHF 0.936598
CLF 0.027365
CLP 1073.513766
CNY 8.233014
CNH 8.233056
COP 4469.284578
CRC 568.61566
CUC 1.164483
CUP 30.858791
CVE 110.746839
CZK 24.199353
DJF 206.952322
DKK 7.46926
DOP 74.818471
DZD 151.338451
EGP 55.403297
ERN 17.46724
ETB 180.669946
FJD 2.633482
FKP 0.872036
GBP 0.873351
GEL 3.138328
GGP 0.872036
GHS 13.333781
GIP 0.872036
GMD 85.007651
GNF 10116.447882
GTQ 8.916541
GYD 243.537172
HKD 9.064392
HNL 30.603057
HRK 7.536071
HTG 152.3838
HUF 382.208885
IDR 19434.051674
ILS 3.767929
IMP 0.872036
INR 104.754244
IQD 1525.472329
IRR 49039.28188
ISK 148.99601
JEP 0.872036
JMD 186.316831
JOD 0.825664
JPY 180.860511
KES 150.572039
KGS 101.834459
KHR 4663.753596
KMF 491.412105
KPW 1048.026495
KRW 1715.92392
KWD 0.357438
KYD 0.970111
KZT 588.683098
LAK 25257.630031
LBP 104279.425622
LKR 359.050455
LRD 206.001381
LSL 19.738426
LTL 3.438415
LVL 0.704384
LYD 6.346874
MAD 10.755749
MDL 19.806011
MGA 5225.03425
MKD 61.609192
MMK 2445.343302
MNT 4129.840334
MOP 9.334532
MRU 46.416721
MUR 53.687009
MVR 17.937387
MWK 2022.70684
MXN 21.166896
MYR 4.787234
MZN 74.422528
NAD 19.738421
NGN 1688.744886
NIO 42.823896
NOK 11.76959
NPR 167.455263
NZD 2.016541
OMR 0.44774
PAB 1.164113
PEN 4.096072
PGK 4.876276
PHP 68.663144
PKR 326.49188
PLN 4.230857
PYG 8005.996555
QAR 4.23994
RON 5.091938
RSD 117.397367
RUB 89.084898
RWF 1689.664388
SAR 4.370504
SBD 9.584382
SCR 16.274091
SDG 700.440621
SEK 10.950883
SGD 1.508844
SHP 0.873664
SLE 27.60251
SLL 24418.617678
SOS 665.506124
SRD 44.982846
STD 24102.440677
STN 24.91993
SVC 10.184289
SYP 12877.133952
SZL 19.738411
THB 37.112493
TJS 10.680213
TMT 4.087334
TND 3.43668
TOP 2.803795
TRY 49.521868
TTD 7.891054
TWD 36.42677
TZS 2835.515749
UAH 48.861004
UGX 4117.9408
USD 1.164483
UYU 45.527234
UZS 13979.615126
VES 296.421323
VND 30695.763805
VUV 142.148529
WST 3.249082
XAF 655.626335
XAG 0.019932
XAU 0.000277
XCD 3.147073
XCG 2.097942
XDR 0.815161
XOF 655.025699
XPF 119.331742
YER 277.787769
ZAR 19.724129
ZMK 10481.745796
ZMW 26.912427
ZWL 374.962952
  • RBGPF

    0.0000

    78.35

    0%

  • CMSC

    -0.0500

    23.43

    -0.21%

  • RYCEF

    -0.1600

    14.49

    -1.1%

  • GSK

    -0.1600

    48.41

    -0.33%

  • SCS

    -0.0900

    16.14

    -0.56%

  • RELX

    -0.2200

    40.32

    -0.55%

  • NGG

    -0.5000

    75.41

    -0.66%

  • CMSD

    -0.0700

    23.25

    -0.3%

  • VOD

    -0.1630

    12.47

    -1.31%

  • RIO

    -0.6700

    73.06

    -0.92%

  • BTI

    -1.0300

    57.01

    -1.81%

  • JRI

    0.0400

    13.79

    +0.29%

  • BCE

    0.3300

    23.55

    +1.4%

  • BCC

    -1.2100

    73.05

    -1.66%

  • AZN

    0.1500

    90.18

    +0.17%

  • BP

    -1.4000

    35.83

    -3.91%

The surprising climate power of penguin poo
The surprising climate power of penguin poo / Photo: Mark RALSTON - AFP/File

The surprising climate power of penguin poo

Antarctica's icy wilderness is warming rapidly under the weight of human-driven climate change, yet a new study points to an unlikely ally in the fight to keep the continent cool: penguin poo.

Text size:

Published Thursday in Communications Earth & Environment, the research shows that ammonia wafting off penguin guano seeds extra cloud cover above coastal Antarctica, likely blocking sunlight and nudging temperatures down.

Lead author Matthew Boyer, an atmospheric scientist at the University of Helsinki, told AFP that lab studies had long shown gaseous ammonia can help form clouds.

But "to actually quantify this process and to see its influence in Antarctica hasn't been done," he said.

Antarctica is an ideal natural laboratory. With virtually no human pollution and scant vegetation -- both alternative sources of cloud-forming gases -- penguin colonies dominate as ammonia emitters.

The birds' future, however, is under threat.

Shrinking sea ice disrupts their nesting, feeding and predator-avoidance routines -- making it all the more urgent to understand their broader ecological role.

Along with other seabirds such as Imperial Shags, penguins expel large amounts of ammonia through droppings, an acrid cocktail of feces and urine released via their multi-purpose cloacas.

When that ammonia mixes with sulfur-bearing gases from phytoplankton -- the microscopic algae that bloom in the surrounding ocean -- it boosts the formation of tiny aerosol particles that grow into clouds.

To capture the effect in the real world, Boyer and teammates set up instruments at Argentina's Marambio Base on Seymour Island, off the northern tip of the Antarctic Peninsula.

Over three summer months -- when penguin colonies are bustling and phytoplankton photosynthesis peaks -- they monitored wind direction, ammonia levels and newly minted aerosols.

When the breeze blew from a 60,000-strong Adelie penguin colony eight kilometers (five miles) away, atmospheric ammonia spiked to 13.5  parts per billion -- about a thousand times the background level.

For over a month after the birds had departed on their annual migration, concentrations stayed roughly 100 times higher, with the guano-soaked ground acting as a slow-release fertilizer.

Particle counters told the same story: cloud-seeding aerosols surged whenever air masses arrived from the colony, at times thick enough to generate a dense fog.

Chemical fingerprints in the particles pointed back to penguin-derived ammonia.

- Penguin-plankton partnership -

Boyer calls it a "synergistic process" between penguins and phytoplankton that supercharges aerosol production in the region.

"We provide evidence that declining penguin populations could cause a positive climate-warming feedback in the summertime Antarctic atmosphere," the authors write -- though Boyer emphasized that this remains a hypothesis, not a confirmed outcome.

Globally, clouds have a net cooling effect by reflecting solar radiation back into space. Based on Arctic modeling of seabird emissions, the team believes a similar mechanism is likely at play in Antarctica.

But the impact also depends on what's beneath the clouds.

Ice sheets and glaciers also reflect much of the Sun's energy, so extra cloud cover over these bright surfaces could trap infrared heat instead -- meaning the overall effect hinges on where the clouds form and drift.

Still, the findings highlight the profound interconnections between life and the atmosphere -- from the Great Oxygenation Event driven by photosynthesizing microbes billions of years ago to penguins influencing cloud cover today.

"This is just another example of this deep connection between the ecosystem and atmospheric processes, and why we should care about biodiversity and conservation," Boyer said.

(U.Gruber--BBZ)