Berliner Boersenzeitung - What are regulatory T-cells? Nobel-winning science explained

EUR -
AED 4.278799
AFN 77.332466
ALL 96.575617
AMD 445.1876
ANG 2.085576
AOA 1068.388216
ARS 1684.735918
AUD 1.75613
AWG 2.09862
AZN 1.984015
BAM 1.955298
BBD 2.351906
BDT 142.873314
BGN 1.955951
BHD 0.439244
BIF 3450.13256
BMD 1.165091
BND 1.512264
BOB 8.068928
BRL 6.18139
BSD 1.167705
BTN 104.895516
BWP 15.51395
BYN 3.380546
BYR 22835.780461
BZD 2.348507
CAD 1.624445
CDF 2598.152383
CHF 0.935795
CLF 0.027249
CLP 1068.972737
CNY 8.239114
CNH 8.235468
COP 4423.838268
CRC 572.550529
CUC 1.165091
CUP 30.874907
CVE 110.236695
CZK 24.215228
DJF 207.947498
DKK 7.468599
DOP 74.200629
DZD 151.573688
EGP 55.422094
ERN 17.476363
ETB 182.080866
FJD 2.631882
FKP 0.872491
GBP 0.87341
GEL 3.139877
GGP 0.872491
GHS 13.301585
GIP 0.872491
GMD 85.051785
GNF 10146.786517
GTQ 8.944742
GYD 244.307269
HKD 9.07004
HNL 30.745973
HRK 7.537941
HTG 152.955977
HUF 381.927241
IDR 19422.821609
ILS 3.76036
IMP 0.872491
INR 104.791181
IQD 1529.71378
IRR 49079.451231
ISK 149.003201
JEP 0.872491
JMD 187.141145
JOD 0.82607
JPY 180.711448
KES 150.704566
KGS 101.886647
KHR 4676.939601
KMF 491.66861
KPW 1048.573823
KRW 1715.887947
KWD 0.35759
KYD 0.973154
KZT 590.220982
LAK 25331.604319
LBP 104570.198293
LKR 360.448994
LRD 206.107962
LSL 19.822595
LTL 3.44021
LVL 0.704752
LYD 6.347397
MAD 10.774234
MDL 19.862985
MGA 5193.64414
MKD 61.624177
MMK 2446.620372
MNT 4131.997126
MOP 9.362236
MRU 46.266921
MUR 53.675364
MVR 17.954132
MWK 2024.871384
MXN 21.185039
MYR 4.789718
MZN 74.447687
NAD 19.822595
NGN 1690.547045
NIO 42.970442
NOK 11.774198
NPR 167.831186
NZD 2.017279
OMR 0.448002
PAB 1.1678
PEN 3.926892
PGK 4.952877
PHP 68.813177
PKR 329.883811
PLN 4.230421
PYG 8097.955442
QAR 4.268104
RON 5.093784
RSD 117.405001
RUB 89.428762
RWF 1699.056442
SAR 4.372624
SBD 9.581501
SCR 15.83572
SDG 700.739077
SEK 10.962357
SGD 1.508886
SHP 0.87412
SLE 26.796781
SLL 24431.370198
SOS 666.226074
SRD 45.023191
STD 24115.028075
STN 24.494657
SVC 10.21742
SYP 12883.858981
SZL 19.816827
THB 37.09708
TJS 10.731491
TMT 4.077818
TND 3.427635
TOP 2.805259
TRY 49.532165
TTD 7.917001
TWD 36.455959
TZS 2842.8212
UAH 49.235746
UGX 4139.936989
USD 1.165091
UYU 45.74845
UZS 13910.428222
VES 289.625154
VND 30711.794538
VUV 142.222766
WST 3.250779
XAF 655.7858
XAG 0.020016
XAU 0.000276
XCD 3.148716
XCG 2.104569
XDR 0.815587
XOF 655.791427
XPF 119.331742
YER 277.75676
ZAR 19.715959
ZMK 10487.212054
ZMW 26.828226
ZWL 375.158775
  • RBGPF

    0.0000

    78.35

    0%

  • CMSC

    0.0400

    23.48

    +0.17%

  • VOD

    0.0500

    12.64

    +0.4%

  • RIO

    -0.5500

    73.73

    -0.75%

  • NGG

    -0.5800

    75.91

    -0.76%

  • GSK

    -0.4000

    48.57

    -0.82%

  • RYCEF

    0.4600

    14.67

    +3.14%

  • AZN

    -0.8200

    90.03

    -0.91%

  • RELX

    0.3500

    40.54

    +0.86%

  • BTI

    0.5300

    58.04

    +0.91%

  • BP

    -0.0100

    37.23

    -0.03%

  • CMSD

    -0.0300

    23.32

    -0.13%

  • JRI

    0.0500

    13.75

    +0.36%

  • SCS

    -0.1200

    16.23

    -0.74%

  • BCC

    -2.3000

    74.26

    -3.1%

  • BCE

    0.0400

    23.22

    +0.17%

What are regulatory T-cells? Nobel-winning science explained
What are regulatory T-cells? Nobel-winning science explained / Photo: Jonathan Nackstrand - AFP

What are regulatory T-cells? Nobel-winning science explained

The Nobel Prize in Medicine was awarded on Monday to three scientists for discovering how a particular kind of cell can stop the body's immune system from attacking itself.

Text size:

The discovery of these "regulatory T-cells" has raised hopes of finding new ways to fight autoimmune diseases and cancer, though treatments based on the work have yet to become widely available.

After Americans Mary Brunkow and Fred Ramsdell and Japan's Shimon Sakaguchi were announced new Nobel laureates at a ceremony in Stockholm, here is what you need to know about their work.

- What is the immune system? -

The immune system is your body's first line of defence against invaders such as microbes that could give you an infection.

Its most powerful weapons are white blood cells called T-cells. They seek out, identify and destroy these invading germs -- or other unwanted outsiders such as cancerous cells -- throughout the body.

But sometimes these T-cells identify the wrong target and attack healthy cells, which causes a range of autoimmune diseases such as type 1 diabetes and lupus.

Enter regulatory T-cells -- also called Tregs -- which the Nobel committee dubbed the body's "security guards".

"They put the brakes on the immune system to prevent it from attacking something that it shouldn't," Jonathan Fisher, head of the innate immune engineering laboratory at University College London, told AFP.

For a long time, it had been thought this crucial regulation role was performed entirely by the thymus, a small gland in the upper chest.

T-cells have things called "receptors" which make sure they can detect the shape of an invading microbe -- such as the famously spiky Covid-19 virus.

When T-cells grow in the thymus, the gland has a way to eliminate any that have receptors which match healthy cells, to avoid friendly fire in the future.

But what if some of these rogue T-cells slip through?

- What did the Nobel winners do? -

Some scientists had once thought there could be some other cell out there, patrolling for escapees.

But by the 1980s, most researchers had abandoned this idea -- except Sakaguchi.

His team took T-cells from one mouse and injected them into another which had no thymus. The mouse was suddenly protected against autoimmune diseases, showing that something other than the gland must be able to fight off self-attacking T-cells.

A decade later, Brunkow and Ramsdell were investigating why the males of a mutated strain of mice called "scurfy" only lived for a few weeks.

In 2021, they were able to prove that a mutation of the gene FOXP3 caused both scurfy and a rare autoimmune disease in humans called IPEX.

Scientists including Sakaguchi were then able to show that FOXP3 controls the development of regulatory T-cells.

- How does this help us? -

A new field of research has been probing exactly what this discovery means for human health.

French immunologist Divi Cornec told AFP that "a defect in regulatory T-cells" can make autoimmune diseases more severe.

These cells also play a "crucial role in preventing transplanted organs from being rejected," Cornec said.

Cancer can also "hijack" regulatory T-cells to help it escape the immune system, Fisher said.

When this happens, the cells crack down too hard on the immune system -- like an overzealous security guard -- and allow the tumour to grow.

- What about new drugs? -

There are now over 200 clinical trials testing treatments involving regulatory T-cells, according to the Nobel ceremony.

However the breakthroughs which won Monday's Nobel have not yet led to a drug that is currently in wide use.

On Monday, Sakaguchi said he hopes the Nobel spurs the field "in a direction where it can be applied in actual bedside and clinical settings".

Fisher emphasised that a lot of progress had been made over the last five years -- and that these things take a lot of time and money.

"There is a big gap between our scientific understanding of the immune system and our ability to investigate it and manipulate it in a lab -- and our ability to actually deliver a safe-in-humans drug product that will have a consistent and beneficial effect," Fisher said.

(T.Burkhard--BBZ)