Berliner Boersenzeitung - Landslide-prone Nepal tests AI-powered warning system

EUR -
AED 4.276798
AFN 76.973093
ALL 96.541337
AMD 443.660189
ANG 2.0846
AOA 1067.888653
ARS 1669.958677
AUD 1.752514
AWG 2.096182
AZN 1.984351
BAM 1.955625
BBD 2.34549
BDT 142.477215
BGN 1.956439
BHD 0.438161
BIF 3440.791247
BMD 1.164546
BND 1.508565
BOB 8.047278
BRL 6.334667
BSD 1.164496
BTN 104.702605
BWP 15.471612
BYN 3.348
BYR 22825.091832
BZD 2.34209
CAD 1.610159
CDF 2599.265981
CHF 0.936209
CLF 0.027366
CLP 1073.571668
CNY 8.233458
CNH 8.232219
COP 4424.302993
CRC 568.848955
CUC 1.164546
CUP 30.860456
CVE 110.255106
CZK 24.203336
DJF 207.371392
DKK 7.470448
DOP 74.533312
DZD 151.068444
EGP 55.295038
ERN 17.468183
ETB 180.629892
FJD 2.632397
FKP 0.873977
GBP 0.872678
GEL 3.138497
GGP 0.873977
GHS 13.246811
GIP 0.873977
GMD 85.012236
GNF 10119.091982
GTQ 8.9202
GYD 243.638138
HKD 9.065875
HNL 30.671248
HRK 7.535429
HTG 152.446321
HUF 381.994667
IDR 19435.740377
ILS 3.768132
IMP 0.873977
INR 104.760771
IQD 1525.563106
IRR 49041.926882
ISK 149.038983
JEP 0.873977
JMD 186.393274
JOD 0.825709
JPY 180.924237
KES 150.636483
KGS 101.839952
KHR 4662.581612
KMF 491.43861
KPW 1048.137083
KRW 1716.311573
KWD 0.357481
KYD 0.970513
KZT 588.927154
LAK 25252.733992
LBP 104283.942272
LKR 359.197768
LRD 204.961608
LSL 19.736529
LTL 3.438601
LVL 0.704422
LYD 6.330432
MAD 10.755735
MDL 19.814222
MGA 5194.533878
MKD 61.634469
MMK 2445.172268
MNT 4132.506664
MOP 9.338362
MRU 46.438833
MUR 53.651052
MVR 17.938355
MWK 2019.3188
MXN 21.165153
MYR 4.787492
MZN 74.426542
NAD 19.736529
NGN 1688.68458
NIO 42.856154
NOK 11.767853
NPR 167.523968
NZD 2.015483
OMR 0.44694
PAB 1.164595
PEN 3.914449
PGK 4.941557
PHP 68.66747
PKR 326.476804
PLN 4.229804
PYG 8009.281302
QAR 4.244719
RON 5.092096
RSD 117.389466
RUB 89.441974
RWF 1694.347961
SAR 4.370508
SBD 9.584899
SCR 15.747587
SDG 700.4784
SEK 10.946786
SGD 1.508673
SHP 0.873711
SLE 27.603998
SLL 24419.93473
SOS 664.340387
SRD 44.985272
STD 24103.740676
STN 24.497802
SVC 10.190086
SYP 12876.900539
SZL 19.72123
THB 37.119932
TJS 10.684641
TMT 4.087555
TND 3.416093
TOP 2.803946
TRY 49.523506
TTD 7.894292
TWD 36.437508
TZS 2841.64501
UAH 48.888813
UGX 4119.630333
USD 1.164546
UYU 45.545913
UZS 13931.74986
VES 296.437311
VND 30697.419423
VUV 142.156724
WST 3.247609
XAF 655.898144
XAG 0.019964
XAU 0.000277
XCD 3.147243
XCG 2.098812
XDR 0.815727
XOF 655.898144
XPF 119.331742
YER 277.802752
ZAR 19.711451
ZMK 10482.311144
ZMW 26.923584
ZWL 374.983176
  • RBGPF

    0.0000

    78.35

    0%

  • NGG

    -0.5000

    75.41

    -0.66%

  • SCS

    -0.0900

    16.14

    -0.56%

  • AZN

    0.1500

    90.18

    +0.17%

  • BCC

    -1.2100

    73.05

    -1.66%

  • BP

    -1.4000

    35.83

    -3.91%

  • BTI

    -1.0300

    57.01

    -1.81%

  • GSK

    -0.1600

    48.41

    -0.33%

  • RELX

    -0.2200

    40.32

    -0.55%

  • CMSC

    -0.0500

    23.43

    -0.21%

  • RIO

    -0.6700

    73.06

    -0.92%

  • JRI

    0.0400

    13.79

    +0.29%

  • BCE

    0.3300

    23.55

    +1.4%

  • CMSD

    -0.0700

    23.25

    -0.3%

  • VOD

    -0.1630

    12.47

    -1.31%

  • RYCEF

    -0.0500

    14.62

    -0.34%

Landslide-prone Nepal tests AI-powered warning system
Landslide-prone Nepal tests AI-powered warning system / Photo: Prakash MATHEMA - AFP

Landslide-prone Nepal tests AI-powered warning system

Every morning, Nepali primary school teacher Bina Tamang steps outside her home and checks the rain gauge, part of an early warning system in one of the world's most landslide-prone regions.

Text size:

Tamang contributes to an AI-powered early warning system that uses rainfall and ground movement data, local observations and satellite imagery to predict landslides up to weeks in advance, according to its developers at the University of Melbourne.

From her home in Kimtang village in the hills of northwest Nepal, 29-year-old Tamang sends photos of the water level to experts in the capital Kathmandu, a five-hour drive to the south.

"Our village is located in difficult terrain, and landslides are frequent here, like many villages in Nepal," Tamang told AFP.

Every year during the monsoon season, floods and landslides wreak havoc across South Asia, killing hundreds of people.

Nepal is especially vulnerable due to unstable geology, shifting rainfall patterns and poorly planned development.

As a mountainous country, it is already "highly prone" to landslides, said Rajendra Sharma, an early warning expert at the National Disaster Risk Reduction and Management Authority.

"And climate change is fuelling them further. Shifting rainfall patterns, rain instead of snowfall in high altitudes and even increase in wildfires are triggering soil erosion," Sharma told AFP.

- Saving lives -

Landslides killed more than 300 people last year and were responsible for 70 percent of monsoon-linked deaths, government data shows.

Tamang knows the risks first hand.

When she was just five years old, her family and dozens of others relocated after soil erosion threatened their village homes.

They moved about a kilometre (0.6 miles) uphill, but a strong 2015 earthquake left the area even more unstable, prompting many families to flee again.

"The villagers here have lived in fear," Tamang said.

"But I am hopeful that this new early warning system will help save lives."

The landslide forecasting platform was developed by Australian professor Antoinette Tordesillas with partners in Nepal, Britain and Italy.

Its name, SAFE-RISCCS, is an acronym of a complex title -- Spatiotemporal Analytics, Forecasting and Estimation of Risks from Climate Change Systems.

"This is a low-cost but high-impact solution, one that's both scientifically informed and locally owned," Tordesillas told AFP.

Professor Basanta Adhikari from Nepal's Tribhuvan University, who is involved in the project, said that similar systems were already in use in several other countries, including the United States and China.

"We are monitoring landslide-prone areas using the same principles that have been applied abroad, adapted to Nepal's terrain," he told AFP.

"If the system performs well during this monsoon season, we can be confident that it will work in Nepal as well, despite the country's complex Himalayan terrain."

In Nepal, it is being piloted in two high-risk areas: Kimtang in Nuwakot district and Jyotinagar in Dhading district.

- Early warnings -

Tamang's data is handled by technical advisers like Sanjaya Devkota, who compares it against a threshold that might indicate a landslide.

"We are still in a preliminary stage, but once we have a long dataset, the AI component will automatically generate a graphical view and alert us based on the rainfall forecast," Devkota said.

"Then we report to the community, that's our plan."

The experts have been collecting data for two months, but will need a data set spanning a year or two for proper forecasting, he added.

Eventually, the system will deliver a continuously updated landslide risk map, helping decision makers and residents take preventive actions and make evacuation plans.

The system "need not be difficult or resource-intensive, especially when it builds on the community's deep local knowledge and active involvement", Tordesillas said.

Asia suffered more climate and weather-related hazards than any other region in 2023, according to UN data, with floods and storms the most deadly and costly.

And while two-thirds of the region have early warning systems for disasters in place, many other vulnerable countries have little coverage.

In the last decade, Nepal has made progress on flood preparedness, installing 200 sirens along major rivers and actively involving communities in warning efforts.

The system has helped reduce flooding deaths, said Binod Parajuli, a flood expert with the government's hydrology department.

"However, we have not been able to do the same for landslides because predicting them is much more complicated," he said.

"Such technologies are absolutely necessary if Nepal wants to reduce its monsoon toll."

(S.G.Stein--BBZ)