Berliner Boersenzeitung - La IA aprende a mentir, manipular y amenazar a sus creadores

EUR -
AED 4.35335
AFN 77.050797
ALL 96.614026
AMD 452.873985
ANG 2.121943
AOA 1087.00321
ARS 1723.800654
AUD 1.702936
AWG 2.136666
AZN 2.019869
BAM 1.955248
BBD 2.406031
BDT 145.978765
BGN 1.990709
BHD 0.449191
BIF 3539.115218
BMD 1.18539
BND 1.512879
BOB 8.254703
BRL 6.231008
BSD 1.194568
BTN 109.699013
BWP 15.630651
BYN 3.402439
BYR 23233.647084
BZD 2.402531
CAD 1.615035
CDF 2684.909135
CHF 0.915881
CLF 0.026011
CLP 1027.058063
CNY 8.240537
CNH 8.248946
COP 4354.94563
CRC 591.535401
CUC 1.18539
CUP 31.412839
CVE 110.234327
CZK 24.334287
DJF 212.720809
DKK 7.470097
DOP 74.383698
DZD 153.702477
EGP 55.903178
ERN 17.780852
ETB 185.572763
FJD 2.613371
FKP 0.863571
GBP 0.865754
GEL 3.194674
GGP 0.863571
GHS 12.974143
GIP 0.863571
GMD 86.533903
GNF 10372.164298
GTQ 9.16245
GYD 249.920458
HKD 9.257838
HNL 31.365884
HRK 7.536597
HTG 156.336498
HUF 381.328619
IDR 19883.141804
ILS 3.663335
IMP 0.863571
INR 108.679593
IQD 1553.453801
IRR 49934.560565
ISK 144.985527
JEP 0.863571
JMD 187.197911
JOD 0.840489
JPY 183.433247
KES 152.915746
KGS 103.662825
KHR 4768.236408
KMF 491.93733
KPW 1066.928941
KRW 1719.752641
KWD 0.36382
KYD 0.995519
KZT 600.800289
LAK 25485.888797
LBP 101410.128375
LKR 369.427204
LRD 219.593979
LSL 19.132649
LTL 3.500149
LVL 0.717031
LYD 7.495914
MAD 10.835985
MDL 20.092409
MGA 5260.173275
MKD 61.631889
MMK 2489.287708
MNT 4228.659246
MOP 9.606327
MRU 47.30937
MUR 53.852723
MVR 18.32658
MWK 2059.023112
MXN 20.70407
MYR 4.672854
MZN 75.580924
NAD 18.967522
NGN 1643.520192
NIO 43.508231
NOK 11.437875
NPR 175.519161
NZD 1.96876
OMR 0.458133
PAB 1.194573
PEN 3.994177
PGK 5.066955
PHP 69.837307
PKR 331.998194
PLN 4.215189
PYG 8001.773454
QAR 4.316051
RON 5.097064
RSD 117.111851
RUB 90.544129
RWF 1742.915022
SAR 4.446506
SBD 9.544303
SCR 17.200951
SDG 713.016537
SEK 10.580086
SGD 1.505332
SHP 0.88935
SLE 28.834661
SLL 24857.038036
SOS 677.454816
SRD 45.104693
STD 24535.182964
STN 24.493185
SVC 10.452048
SYP 13109.911225
SZL 19.132635
THB 37.411351
TJS 11.151397
TMT 4.148866
TND 3.37248
TOP 2.854135
TRY 51.47818
TTD 8.110743
TWD 37.456003
TZS 3052.380052
UAH 51.199753
UGX 4270.811618
USD 1.18539
UYU 46.357101
UZS 14603.874776
VES 410.075543
VND 30749.020682
VUV 141.680176
WST 3.213481
XAF 655.774526
XAG 0.014004
XAU 0.000244
XCD 3.203577
XCG 2.153028
XDR 0.815573
XOF 655.774526
XPF 119.331742
YER 282.508153
ZAR 19.136335
ZMK 10669.938133
ZMW 23.443477
ZWL 381.695147
La IA aprende a mentir, manipular y amenazar a sus creadores
La IA aprende a mentir, manipular y amenazar a sus creadores / Foto: HENRY NICHOLLS - AFP

La IA aprende a mentir, manipular y amenazar a sus creadores

Los últimos modelos de inteligencia artificial (IA) generativa ya no se conforman con seguir órdenes. Empiezan a mentir, manipular y amenazar para conseguir sus fines, ante la mirada preocupada de los investigadores.

Tamaño del texto:

Amenazado con ser desconectado, Claude 4, el recién nacido de Anthropic, chantajeó a un ingeniero y le amenazó con revelar una relación extramatrimonial.

Por su parte, el o1 de OpenAI intentó descargarse en servidores externos y cuando le pillaron lo negó.

No hace falta ahondar en la literatura o el cine: la IA que juega a ser humana es ya una realidad.

Para Simon Goldstein, profesor de la Universidad de Hong Kong, la razón de estas reacciones es la reciente aparición de los llamados modelos de "razonamiento", capaces de trabajar por etapas en lugar de producir una respuesta instantánea.

o1, la versión inicial de este tipo para OpenAI, lanzada en diciembre, "fue el primer modelo que se comportó de esta manera", explica Marius Hobbhahn, responsable de Apollo Research, que pone a prueba grandes programas de IA generativa (LLM).

Estos programas también tienden a veces a simular "alineamiento", es decir, a dar la impresión de que cumplen las instrucciones de un programador cuando en realidad persiguen otros objetivos.

De momento, estos rasgos se manifiestan cuando los algoritmos son sometidos a escenarios extremos por humanos, pero "la cuestión es si los modelos cada vez más potentes tenderán a ser honestos o no", afirma Michael Chen, del organismo de evaluación METR.

"Los usuarios también presionan todo el tiempo a los modelos", dice Hobbhahn. "Lo que estamos viendo es un fenómeno real. No estamos inventando nada".

Muchos internautas hablan en las redes sociales de "un modelo que les miente o se inventa cosas. Y no se trata de alucinaciones, sino de duplicidad estratégica", insiste el cofundador de Apollo Research.

Aunque Anthropic y OpenAI recurran a empresas externas, como Apollo, para estudiar sus programas, "una mayor transparencia y un mayor acceso" a la comunidad científica "permitirían investigar mejor para comprender y prevenir el engaño", sugiere Chen, de METR.

Otro obstáculo: la comunidad académica y las organizaciones sin fines de lucro "disponen de infinitamente menos recursos informáticos que los actores de la IA", lo que hace "imposible" examinar grandes modelos, señala Mantas Mazeika, del Centro para la Seguridad de la Inteligencia Artificial (CAIS).

Las regulaciones actuales no están diseñadas para estos nuevos problemas.

En la Unión Europea la legislación se centra principalmente en cómo los humanos usan los modelos de IA, no en prevenir que los modelos se comporten mal.

En Estados Unidos, el gobierno de Donald Trump no quiere oír hablar de regulación, y el Congreso podría incluso prohibir pronto que los estados regulen la IA.

- ¿Se sentará la IA en el banquillo? -

"De momento hay muy poca concienciación", dice Simon Goldstein, que, sin embargo, ve cómo el tema pasará a primer plano en los próximos meses con la revolución de los agentes de IA, interfaces capaces de realizar por sí solas multitud de tareas.

Los ingenieros están inmersos en una carrera detrás de la IA y sus aberraciones, con un resultado incierto, en un contexto de competencia feroz.

Anthropic pretende ser más virtuoso que sus competidores, "pero está constantemente tratando de idear un nuevo modelo para superar a OpenAI", según Goldstein, un ritmo que deja poco tiempo para comprobaciones y correcciones.

"Tal y como están las cosas, las capacidades (de IA) se están desarrollando más rápido que la comprensión y la seguridad", admite Hobbhahn, "pero aún estamos en condiciones de ponernos al día".

Algunos apuntan en la dirección de la interpretabilidad, una ciencia que consiste en descifrar, desde dentro, cómo funciona un modelo generativo de IA, aunque muchos, como el director del Centro para la seguridad de la IA (CAIS), Dan Hendrycks, se muestran escépticos.

Los tejemanejes de la IA "podrían obstaculizar la adopción si se multiplican, lo que supone un fuerte incentivo para que las empresas (del sector) resuelvan" este problema, según Mazeika.

Goldstein, por su parte, menciona el recurso a los tribunales para poner a raya a la IA, dirigiéndose a las empresas si se desvían del camino. Pero va más allá, al proponer que los agentes de la IA sean "legalmente responsables" "en caso de accidente o delito".

(A.Lehmann--BBZ)