Berliner Boersenzeitung - Qu'est-ce que la fusion nucléaire?

EUR -
AED 4.276798
AFN 76.973093
ALL 96.541337
AMD 443.660189
ANG 2.0846
AOA 1067.888653
ARS 1669.958677
AUD 1.752514
AWG 2.096182
AZN 1.984351
BAM 1.955625
BBD 2.34549
BDT 142.477215
BGN 1.956439
BHD 0.439061
BIF 3440.791247
BMD 1.164546
BND 1.508565
BOB 8.047278
BRL 6.334667
BSD 1.164496
BTN 104.702605
BWP 15.471612
BYN 3.348
BYR 22825.091832
BZD 2.34209
CAD 1.610159
CDF 2599.265981
CHF 0.936209
CLF 0.027366
CLP 1073.571668
CNY 8.233458
CNH 8.232219
COP 4424.302993
CRC 568.848955
CUC 1.164546
CUP 30.860456
CVE 110.255106
CZK 24.203336
DJF 207.371392
DKK 7.470448
DOP 74.533312
DZD 151.505205
EGP 55.295038
ERN 17.468183
ETB 180.629892
FJD 2.632397
FKP 0.872083
GBP 0.872678
GEL 3.138497
GGP 0.872083
GHS 13.246811
GIP 0.872083
GMD 85.012236
GNF 10119.091982
GTQ 8.9202
GYD 243.638138
HKD 9.065875
HNL 30.671248
HRK 7.535429
HTG 152.446321
HUF 381.994667
IDR 19435.740377
ILS 3.768132
IMP 0.872083
INR 104.760771
IQD 1525.563106
IRR 49041.926882
ISK 149.038983
JEP 0.872083
JMD 186.393274
JOD 0.825709
JPY 180.924237
KES 150.636483
KGS 101.839952
KHR 4662.581612
KMF 491.43861
KPW 1048.083022
KRW 1716.311573
KWD 0.357481
KYD 0.970513
KZT 588.927154
LAK 25252.733992
LBP 104283.942272
LKR 359.197768
LRD 204.961608
LSL 19.736529
LTL 3.438601
LVL 0.704422
LYD 6.330432
MAD 10.755735
MDL 19.814222
MGA 5194.533878
MKD 61.634469
MMK 2445.475195
MNT 4130.063083
MOP 9.338362
MRU 46.438833
MUR 53.651052
MVR 17.938355
MWK 2019.3188
MXN 21.165153
MYR 4.787492
MZN 74.426542
NAD 19.736529
NGN 1688.68458
NIO 42.856154
NOK 11.767853
NPR 167.523968
NZD 2.015483
OMR 0.447772
PAB 1.164595
PEN 3.914449
PGK 4.941557
PHP 68.66747
PKR 326.476804
PLN 4.229804
PYG 8009.281302
QAR 4.244719
RON 5.092096
RSD 117.389466
RUB 89.441974
RWF 1694.347961
SAR 4.370508
SBD 9.584899
SCR 15.774978
SDG 700.4784
SEK 10.946786
SGD 1.508673
SHP 0.873711
SLE 27.603998
SLL 24419.93473
SOS 664.340387
SRD 44.985272
STD 24103.740676
STN 24.497802
SVC 10.190086
SYP 12877.828498
SZL 19.72123
THB 37.119932
TJS 10.684641
TMT 4.087555
TND 3.416093
TOP 2.803946
TRY 49.523506
TTD 7.894292
TWD 36.437508
TZS 2841.64501
UAH 48.888813
UGX 4119.630333
USD 1.164546
UYU 45.545913
UZS 13931.74986
VES 296.437311
VND 30697.419423
VUV 142.156196
WST 3.249257
XAF 655.898144
XAG 0.019993
XAU 0.000278
XCD 3.147243
XCG 2.098812
XDR 0.815727
XOF 655.898144
XPF 119.331742
YER 277.802752
ZAR 19.711451
ZMK 10482.311144
ZMW 26.923584
ZWL 374.983176
  • AEX

    -0.2800

    947.5

    -0.03%

  • BEL20

    16.5400

    5029.74

    +0.33%

  • PX1

    -7.3100

    8114.74

    -0.09%

  • ISEQ

    -5.1000

    12741.69

    -0.04%

  • OSEBX

    7.1500

    1632.45

    +0.44%

  • PSI20

    -40.3700

    8198.25

    -0.49%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    -87.0000

    4263

    -2%

  • N150

    13.5900

    3685.24

    +0.37%

Qu'est-ce que la fusion nucléaire?
Qu'est-ce que la fusion nucléaire? / Photo: Philip Saltonstall - Lawrence Livermore National Laboratory/AFP

Qu'est-ce que la fusion nucléaire?

Le département américain de l'Energie s'apprête à annoncer mardi une "avancée scientifique majeure" dans le domaine de la fusion nucléaire. Depuis des décennies, les scientifiques cherchent à faire de cette manière de produire de l'énergie une réalité.

Taille du texte:

Ses avantages sont nombreux: elle ne génère pas de CO2, moins de déchets radioactifs, et ne présente pas de risque d'accidents nucléaires. Le point sur son fonctionnement, les projets en cours et quand ils pourraient aboutir.

- L'énergie des étoiles -

La fusion nucléaire diffère de la fission, technique utilisée actuellement dans les centrales nucléaires, et qui consiste à casser les liaisons de noyaux atomiques lourds.

La fusion est le processus inverse: on fait fusionner deux noyaux atomiques légers (de l'hydrogène) pour en créer un lourd (hélium), ce qui libère de l'énergie.

C'est ce processus qui est à l'oeuvre dans les étoiles, dont notre Soleil.

"Contrôler la source d'énergie des étoiles est le plus grand défi technologique jamais entrepris par l'humanité", a écrit sur Twitter le physicien Arthur Turrell, auteur du livre "The Star Builders".

- Deux méthodes distinctes -

La fusion n'est possible qu'en chauffant de la matière à des températures extrêmement élevées (de l'ordre de plus de 100 millions de degrés).

"Donc il faut trouver des moyens pour isoler cette matière extrêmement chaude de tout ce qui serait susceptible de la refroidir. C'est la problématique du confinement", a expliqué à l'AFP Erik Lefebvre, chef de projet au Commissariat à l'Energie atomique (CEA).

La première méthode est la fusion par confinement magnétique. Dans un immense réacteur, des atomes légers d'hydrogène (deutérium et tritium) sont chauffés. La matière est alors à l'état de plasma, un gaz à très basse densité. Elle est contrôlée à l'aide d'un champ magnétique, obtenu à l'aide d'aimants.

C'est la méthode qui sera utilisée pour le projet international ITER, actuellement en construction en France, et celle employée par le JET (Joint European Torus) près d'Oxford.

Une deuxième méthode est le confinement inertiel. Là, des lasers de très forte énergie sont envoyés à l'intérieur d'un cylindre de la taille d'un dé à coudre, contenant l'hydrogène.

C'est la technique utilisée par le Laser Megajoule (LMJ) français, ou le projet le plus avancé en la matière, le National Ignition Facility (NIF) américain.

Le but de ces derniers est davantage de démontrer le principe physique, quand la première méthode cherche à reproduire une configuration proche d'un futur réacteur à fusion.

- Où en est-on? -

Depuis des décennies, les scientifiques cherchent à faire en sorte que l'énergie produite par la fusion nucléaire dépasse celle utilisée pour provoquer la réaction.

Selon le Financial Times, c'est cette percée qui doit être annoncée mardi par le NIF américain.

Démontrer qu'obtenir un "gain net d'énergie" est effectivement possible est une étape majeure, qui a enthousiasmé de nombreux scientifiques dans le monde avant même sa confirmation.

Mais "le chemin est encore très long" avant "une démonstration à une échelle industrielle et qui soit commercialement viable", avertit Érik Lefebvre. Selon lui, de tels projets prendront encore 20 ou 30 ans à aboutir.

Parmi les défis: augmenter l'efficacité des sources laser, et reproduire l'expérience à de beaucoup plus fortes cadences.

- Pourquoi tant d'engouement? -

Contrairement à la fission, la fusion ne comporte aucun risque d'accident nucléaire. "Si jamais il manque quelques lasers qui ne se déclenchent pas au bon moment, ou si jamais le confinement du plasma par le champ magnétique (...) n'est pas parfait" la réaction va tout simplement s'arrêter, explique Érik Lefebvre.

De plus, la fusion nucléaire produit moins de déchets radioactifs que les actuelles centrales.

Surtout, elle ne génère pas de gaz à effet de serre.

"C'est une source d'énergie qui est totalement décarbonnée, qui génère très peu de déchets, et qui est intrinsèquement extrêmement sûre", résume M. Lefebvre. Ce qui en fait "une solution d'avenir pour les problèmes d'énergie à l'échelle du globe".

Toutefois, en raison de son stade de développement encore précoce, elle ne représente pas une solution immédiate à la crise climatique et au besoin de transition rapide des énergies fossiles.

(H.Schneide--BBZ)