Berliner Boersenzeitung - Sur la trace des plus grandes étoiles de l'Univers

EUR -
AED 4.393893
AFN 78.953262
ALL 96.712183
AMD 453.508778
ANG 2.141423
AOA 1096.982427
ARS 1727.451153
AUD 1.698153
AWG 2.153291
AZN 2.038317
BAM 1.958071
BBD 2.409094
BDT 146.15954
BGN 2.008985
BHD 0.450954
BIF 3552.929735
BMD 1.196273
BND 1.513155
BOB 8.264587
BRL 6.209182
BSD 1.196087
BTN 110.048653
BWP 15.598093
BYN 3.378819
BYR 23446.943706
BZD 2.40559
CAD 1.614436
CDF 2700.552296
CHF 0.916189
CLF 0.026045
CLP 1028.388088
CNY 8.312181
CNH 8.311936
COP 4359.217493
CRC 591.786453
CUC 1.196273
CUP 31.701225
CVE 110.804782
CZK 24.31101
DJF 212.601738
DKK 7.467074
DOP 75.365224
DZD 154.565403
EGP 56.018941
ERN 17.94409
ETB 186.066631
FJD 2.620557
FKP 0.868017
GBP 0.866818
GEL 3.223992
GGP 0.868017
GHS 13.105188
GIP 0.868017
GMD 87.921452
GNF 10468.58156
GTQ 9.177646
GYD 250.240271
HKD 9.337171
HNL 31.565615
HRK 7.533166
HTG 156.781862
HUF 380.306994
IDR 20082.72598
ILS 3.701501
IMP 0.868017
INR 109.882846
IQD 1566.917574
IRR 50392.985067
ISK 145.000343
JEP 0.868017
JMD 187.6777
JOD 0.848092
JPY 183.222907
KES 154.40293
KGS 104.613833
KHR 4810.580119
KMF 492.864764
KPW 1076.725699
KRW 1713.94742
KWD 0.366574
KYD 0.996756
KZT 600.856975
LAK 25728.844638
LBP 107110.745044
LKR 370.069269
LRD 221.276674
LSL 18.872091
LTL 3.532282
LVL 0.723613
LYD 7.513716
MAD 10.831664
MDL 20.118337
MGA 5353.320097
MKD 61.634363
MMK 2512.666424
MNT 4266.975685
MOP 9.616255
MRU 47.712345
MUR 54.011532
MVR 18.494352
MWK 2074.00578
MXN 20.611939
MYR 4.698357
MZN 76.274769
NAD 18.872091
NGN 1660.235465
NIO 44.021063
NOK 11.418823
NPR 176.078245
NZD 1.969161
OMR 0.459945
PAB 1.196087
PEN 4.00004
PGK 5.19803
PHP 70.595039
PKR 334.579101
PLN 4.204623
PYG 8026.310264
QAR 4.360258
RON 5.097551
RSD 117.40341
RUB 90.022504
RWF 1745.124288
SAR 4.486872
SBD 9.663103
SCR 16.582304
SDG 719.559071
SEK 10.538893
SGD 1.512627
SHP 0.897514
SLE 29.066997
SLL 25085.238207
SOS 682.391552
SRD 45.462545
STD 24760.428343
STN 24.528452
SVC 10.46614
SYP 13230.266835
SZL 18.865884
THB 37.449369
TJS 11.171559
TMT 4.186954
TND 3.425373
TOP 2.880337
TRY 51.937248
TTD 8.118417
TWD 37.536041
TZS 3068.439642
UAH 51.190079
UGX 4254.935589
USD 1.196273
UYU 45.262503
UZS 14554.8832
VES 428.83521
VND 31103.08859
VUV 143.037152
WST 3.250046
XAF 656.718773
XAG 0.010292
XAU 0.000222
XCD 3.232987
XCG 2.155701
XDR 0.815887
XOF 656.718773
XPF 119.331742
YER 285.195798
ZAR 18.827632
ZMK 10767.891779
ZMW 23.652436
ZWL 385.199301
  • AEX

    -0.2000

    996.93

    -0.02%

  • BEL20

    -6.9900

    5373.55

    -0.13%

  • PX1

    4.8400

    8071.36

    +0.06%

  • ISEQ

    -42.9200

    12964.32

    -0.33%

  • OSEBX

    7.0000

    1756.57

    +0.4%

  • PSI20

    -19.0600

    8644.48

    -0.22%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    -17.9800

    4068.04

    -0.44%

  • N150

    -8.2500

    3919.16

    -0.21%

Sur la trace des plus grandes étoiles de l'Univers
Sur la trace des plus grandes étoiles de l'Univers / Photo: - - ESA/HUBBLE/AFP

Sur la trace des plus grandes étoiles de l'Univers

Elles ont illuminé le cosmos naissant avec la lumière de millions de Soleil et pour la première fois des astronomes ont détecté la trace chimique d'étoiles supermassives, des "monstres célestes" dans une galaxie apparue il y a plus de 10 milliards d'années.

Taille du texte:

"Nous pensons avoir trouvé un premier indice de la présence de ces étoiles extraordinaires", a annoncé Corinne Charbonnel, professeure d'astronomie à l'Université de Genève dans un communiqué. Le superlatif n'est pas volé pour décrire des astres hors-normes, jusqu'ici uniquement théorisés.

L'étoile la plus massive observée à ce jour a une masse équivalente à celle d'un peu plus de 300 Soleils. Celle décrite dans l'étude parue dans l'édition de mai d'Astronomy & Astrophysics la laisse loin derrière, avec une masse estimée entre 5.000 et 10.000 fois celle du Soleil.

L'équipe menée par l'astrophysicienne, avec des scientifiques des Universités de Genève et Barcelone et de l'Institut d'astrophysique de Paris, avait théorisé leur existence en 2018 pour expliquer une énigme de l'astronomie: la grande diversité de composition des étoiles dans les amas globulaires.

Généralement très vieux, ces amas concentrent plusieurs millions d'étoiles dans un volume réduit. Les progrès de l'astronomie en dévoilent un nombre croissant, comme une sorte de "chaînon manquant" entre les premières étoiles et les premières galaxies. Notre voie lactée, qui contient plus de cent milliards d'étoiles, compte environ 180 amas globulaires, rappelle le communiqué de l'Université de Genève.

L'énigme repose sur le fait que bon nombre des étoiles de ces amas contiennent des éléments exigeant des températures colossales pour être produits, jusqu'à 70 millions de degrés pour l'aluminium. Des températures bien supérieures à celles que les étoiles atteignent dans leur cœur, au maximum 15 à 20 millions de degrés -comme notre Soleil.

La solution proposée est celle d'une "pollution" par une étoile supermassive jeune, seule à même d'atteindre une température aussi extrême. Les scientifiques imaginent que de telles étoiles supermassives sont nées par collisions successives dans l'espace restreint et très dense de l'amas.

- Une "étoile-graine" -

Une "espèce d'étoile-graine va engloutir de plus en plus d'étoiles", explique Mme Charbonnel à l'AFP. Et devenir "comme un immense réacteur nucléaire, continuellement alimenté en matière et qui va en éjecter beaucoup" dans l'amas. Cette matière va alimenter les jeunes étoiles en formation, en proportion de "leur proximité avec l'étoile supermassive".

Restait à trouver une preuve du phénomène. L'équipe l'a dénichée dans une galaxie des premiers âges de l'Univers, GN-Z11.

Découverte en 2015 par un collègue de Corinne Charbonnel, cette galaxie parmi les plus distantes observées, à plus de 13 milliards d'années lumière, et donc une des plus anciennes, existait déjà 440 millions d'années après le Big Bang.

Découverte avec le télescope spatial Hubble, l'observation de cette minuscule tache rouge avec son successeur James-Webb a livré deux indices clés: une très forte densité d'étoiles et surtout beaucoup d'azote. Un élément dont la présence ne peut s'expliquer dans de telles proportions que par la combustion d'hydrogène à des températures extrêmes. Un phénomène qui ne peut se produire que dans une étoile supermassive.

Si l'équipe tenait avec sa théorie "comme une espèce de trace de pas de notre étoile supermassive, là c'est un peu comme si on avait trouvé un os", reprend Mme Charbonnel: "Et on spécule sur la tête de la bête derrière tout ça...".

L'espoir d'en observer une un jour est mince. Les scientifiques estiment l'espérance de vie d'une étoile supermassive autour de deux millions d'années, un clin d'œil dans les échelles de temps cosmique.

Mais ils soupçonnent qu'elles pourraient être apparues dans des amas globulaires jusqu'il y a encore deux milliards d'années, soit relativement récemment. Et donc y laisser une trace permettant de mieux les cerner.

(Y.Berger--BBZ)