Berliner Boersenzeitung - What will the Artemis Moon base look like?

EUR -
AED 4.26841
AFN 80.362394
ALL 97.542216
AMD 446.735356
ANG 2.080099
AOA 1065.794205
ARS 1494.414015
AUD 1.776887
AWG 2.092071
AZN 1.980459
BAM 1.954642
BBD 2.348809
BDT 141.226338
BGN 1.956132
BHD 0.43854
BIF 3466.946195
BMD 1.162261
BND 1.493215
BOB 8.038238
BRL 6.486005
BSD 1.163311
BTN 100.147673
BWP 15.618748
BYN 3.807045
BYR 22780.325028
BZD 2.336716
CAD 1.596076
CDF 3354.287055
CHF 0.932807
CLF 0.029182
CLP 1120.296341
CNY 8.342655
CNH 8.346165
COP 4674.330945
CRC 587.052233
CUC 1.162261
CUP 30.799929
CVE 110.199718
CZK 24.634179
DJF 206.947405
DKK 7.463699
DOP 70.258379
DZD 151.514244
EGP 57.439973
ERN 17.433922
ETB 161.636047
FJD 2.620788
FKP 0.864949
GBP 0.866519
GEL 3.150183
GGP 0.864949
GHS 12.127816
GIP 0.864949
GMD 83.106172
GNF 10094.020343
GTQ 8.931709
GYD 243.385819
HKD 9.121487
HNL 30.445964
HRK 7.532663
HTG 152.739518
HUF 398.923459
IDR 18977.696027
ILS 3.908598
IMP 0.864949
INR 100.127437
IQD 1523.897249
IRR 48945.741055
ISK 142.354235
JEP 0.864949
JMD 186.029797
JOD 0.824089
JPY 172.932309
KES 150.300962
KGS 101.640213
KHR 4662.238109
KMF 491.989694
KPW 1046.046309
KRW 1616.942576
KWD 0.355234
KYD 0.969426
KZT 620.152624
LAK 25087.138481
LBP 104232.653
LKR 350.972086
LRD 233.241828
LSL 20.596898
LTL 3.431856
LVL 0.703041
LYD 6.327252
MAD 10.519168
MDL 19.788278
MGA 5176.933206
MKD 61.523554
MMK 2439.678938
MNT 4168.013035
MOP 9.404829
MRU 46.275587
MUR 53.119698
MVR 17.903172
MWK 2017.205016
MXN 21.777182
MYR 4.935007
MZN 74.338683
NAD 20.596898
NGN 1779.387897
NIO 42.814637
NOK 11.838157
NPR 160.236077
NZD 1.94976
OMR 0.446894
PAB 1.163311
PEN 4.140847
PGK 4.817146
PHP 66.377189
PKR 331.310933
PLN 4.244785
PYG 9003.666265
QAR 4.229694
RON 5.072695
RSD 117.080642
RUB 91.265035
RWF 1681.00418
SAR 4.36165
SBD 9.64543
SCR 17.082281
SDG 697.942292
SEK 11.245095
SGD 1.492813
SHP 0.913355
SLE 26.62005
SLL 24372.046713
SOS 664.806172
SRD 43.245469
STD 24056.466061
STN 24.485495
SVC 10.17897
SYP 15112.803405
SZL 20.592801
THB 37.628259
TJS 11.196867
TMT 4.079538
TND 3.419874
TOP 2.722137
TRY 46.947496
TTD 7.897322
TWD 34.181766
TZS 3030.404801
UAH 48.58252
UGX 4168.530579
USD 1.162261
UYU 46.882227
UZS 14725.276806
VES 135.943958
VND 30404.760344
VUV 138.92149
WST 3.080055
XAF 655.568644
XAG 0.030448
XAU 0.000347
XCD 3.14107
XCG 2.096558
XDR 0.815317
XOF 655.568644
XPF 119.331742
YER 280.163552
ZAR 20.586499
ZMK 10461.752209
ZMW 26.785133
ZWL 374.247723
  • CMSC

    0.0900

    22.314

    +0.4%

  • CMSD

    0.0250

    22.285

    +0.11%

  • RBGPF

    0.0000

    69.04

    0%

  • SCS

    0.0400

    10.74

    +0.37%

  • RELX

    0.0300

    53

    +0.06%

  • RIO

    -0.1400

    59.33

    -0.24%

  • GSK

    0.1300

    41.45

    +0.31%

  • NGG

    0.2700

    71.48

    +0.38%

  • BP

    0.1750

    30.4

    +0.58%

  • BTI

    0.7150

    48.215

    +1.48%

  • BCC

    0.7900

    91.02

    +0.87%

  • JRI

    0.0200

    13.13

    +0.15%

  • VOD

    0.0100

    9.85

    +0.1%

  • BCE

    -0.0600

    22.445

    -0.27%

  • RYCEF

    0.1000

    12

    +0.83%

  • AZN

    -0.1200

    73.71

    -0.16%

What will the Artemis Moon base look like?
What will the Artemis Moon base look like? / Photo: Lucie AUBOURG - AFP

What will the Artemis Moon base look like?

The next time NASA goes to the Moon, it intends to stay. Under the Artemis program, the US space agency plans to maintain a human presence, for the very first time, on a celestial body other than Earth.

Text size:

But building a lunar base is no small feat. It will need power generators, vehicles and habitats, and the space industry is racing to meet the technological challenges.

"It's the Super Bowl of engineering," Neal Davis, lead systems engineer for the Lunar Terrain Vehicle at space company Dynetics, told AFP.

Dynetics revealed its prototype design for a Moon rover last month at the Space Symposium in Colorado Springs.

But it probably won't be until later Artemis missions -- 7 onwards -- "where we're starting to look at adding permanent habitations on the surface," said NASA associate administrator Jim Free.

Artemis 3, the first planned landing, won't happen until later this decade, so habitat building wouldn't start before the 2030s.

The base would likely comprise multiple sites, he added, to diversify the targets of scientific exploration and to offer more flexibility for the landings.

- Power and communications -

Despite this distant timeline, companies are already chomping at the bit.

"Step zero is communications," Joe Landon, CEO of Crescent Space, a new subsidiary of Lockheed Martin dedicated to lunar services, told AFP.

"Think about when you move into a new apartment, you've got to hook up your phone and your internet first."

Starting out with a pair of satellites, the company wants to become the Moon's internet and GPS provider.

This would relieve the strain on NASA's Deep Space Network, which threatens to overheat in the face of all the upcoming missions, including private ones.

Landon estimates the value of the lunar market will be "$100 billion over the next 10 years."

Next up: switching on the lights.

Astrobotic, with 220 employees, is one of three companies selected by NASA to develop solar panels.

They need to be placed vertically because at the Moon's south pole -- the intended destination because it has water in the form of ice -- the Sun barely peeps above the horizon.

About 60 feet (18 meters) high, the Astrobotic panels will be connected by cables running several miles (kilometers), said Mike Provenzano, the company's director of lunar surface systems.

The solar arrays will be fixed to vehicles that can run them out to different locations.

- Vehicles -

For its scientific expeditions, NASA has tasked industry with developing an unpressurized -- that is to say, open top -- rover for two people, ready by 2028.

Unlike the Apollo missions' rovers, it will also have to operate autonomously for outings without an astronaut.

This means surviving frigid lunar nights, which can last two weeks, with temperatures dropping to around -280 degrees Fahrenheit (-170 Celsius).

Many companies have made a start.

Lockheed Martin has partnered with General Motors, leaning on the auto giant's expertise in electric and off-road vehicles.

Dynetics, a subsidiary of engineering behemoth Leidos, has joined forces with Nascar.

Its prototype, which will achieve a top speed of nine miles per hour (15 kilometers per hour), includes a robotic arm and metal wheels that are braided like textiles to maximize traction on the sandy surface and deal with any rocks they encounter.

"But at the same time, they actually have a lot of openings to the outside so that they don't collect that sand and carry it with us," Davis said.

Moon dust, or regolith, poses a major challenge because, lacking erosion by water or wind, it is almost as abrasive as glass.

NASA has yet to announce the selected company or companies.

In the longer term, NASA is working with the Japanese space agency JAXA on a pressurized vehicle, in which astronauts won't need to keep their suits on.

- Habitats -

Finally, the crew will need a place to hang up their helmets and call home.

NASA has awarded a $57.2 million contract to the Texas-based company Icon, which specializes in 3D printing, to develop the technology needed to build roads, landing strips on the Moon, and ultimately, dwellings.

The idea is to use lunar soil as a material. Other companies, such as Lockheed Martin, are developing inflatable habitat concepts.

"The beautiful thing is you can land it on the moon and inflate it and now there's a much larger volume for the crew to live in and work in," Kirk Shireman, vice president for the Lockheed Martin Lunar Exploration Campaign, told AFP.

Inside would be bedrooms, a kitchen, a space for scientific instruments, etc. -- all mounted on a frame, so the habitat can be mobile.

The basic concept behind returning to the Moon under Artemis is to help NASA prepare for much more distant missions to Mars.

"Whatever money we have to spend to go develop these systems on the moon, we want those same systems to be applicable to go to Mars," said Shireman.

(A.Berg--BBZ)