Berliner Boersenzeitung - What will the Artemis Moon base look like?

EUR -
AED 4.36266
AFN 78.403573
ALL 96.652271
AMD 448.82188
ANG 2.126486
AOA 1089.329377
ARS 1707.957731
AUD 1.717838
AWG 2.13827
AZN 2.029696
BAM 1.955895
BBD 2.387966
BDT 145.077073
BGN 1.994971
BHD 0.447892
BIF 3494.023273
BMD 1.187928
BND 1.504623
BOB 8.2104
BRL 6.273922
BSD 1.185628
BTN 107.747253
BWP 15.604301
BYN 3.380836
BYR 23283.387086
BZD 2.384566
CAD 1.631518
CDF 2619.381102
CHF 0.923388
CLF 0.026016
CLP 1027.260466
CNY 8.261266
CNH 8.261629
COP 4383.157015
CRC 586.708847
CUC 1.187928
CUP 31.48009
CVE 110.270376
CZK 24.241273
DJF 211.13585
DKK 7.469218
DOP 74.241119
DZD 153.482633
EGP 55.894505
ERN 17.818919
ETB 184.307125
FJD 2.628231
FKP 0.871913
GBP 0.868061
GEL 3.195286
GGP 0.871913
GHS 12.92963
GIP 0.871913
GMD 87.315866
GNF 10385.156596
GTQ 9.099444
GYD 248.062093
HKD 9.264216
HNL 31.444514
HRK 7.536449
HTG 155.381035
HUF 381.711533
IDR 19949.348607
ILS 3.699546
IMP 0.871913
INR 109.026808
IQD 1556.185565
IRR 50041.463503
ISK 145.342496
JEP 0.871913
JMD 186.632814
JOD 0.842267
JPY 183.553272
KES 153.242603
KGS 103.884412
KHR 4787.349845
KMF 495.968443
KPW 1069.155932
KRW 1719.567159
KWD 0.364432
KYD 0.988048
KZT 595.749043
LAK 25579.031676
LBP 101627.232593
LKR 367.084806
LRD 219.350694
LSL 19.036537
LTL 3.507642
LVL 0.718565
LYD 7.487207
MAD 10.842808
MDL 20.001807
MGA 5351.615555
MKD 61.633005
MMK 2494.571257
MNT 4236.231983
MOP 9.522664
MRU 47.391748
MUR 54.074375
MVR 18.365957
MWK 2058.679306
MXN 20.58703
MYR 4.697665
MZN 75.730237
NAD 19.036539
NGN 1677.354548
NIO 43.598689
NOK 11.613718
NPR 172.389599
NZD 1.990017
OMR 0.456761
PAB 1.185658
PEN 3.981344
PGK 5.145078
PHP 70.151302
PKR 332.005401
PLN 4.206863
PYG 7968.220766
QAR 4.325661
RON 5.098627
RSD 117.414757
RUB 90.905771
RWF 1726.059257
SAR 4.454742
SBD 9.599607
SCR 17.415488
SDG 714.537467
SEK 10.617676
SGD 1.507581
SHP 0.891254
SLE 28.973532
SLL 24910.253491
SOS 676.410199
SRD 45.289757
STD 24587.709373
STN 24.530711
SVC 10.374506
SYP 13137.977718
SZL 19.030304
THB 36.967133
TJS 11.068326
TMT 4.169627
TND 3.39777
TOP 2.860245
TRY 51.545184
TTD 8.057393
TWD 37.390618
TZS 3011.960353
UAH 51.116301
UGX 4203.20491
USD 1.187928
UYU 44.492356
UZS 14391.746512
VES 425.529606
VND 31051.247706
VUV 142.273124
WST 3.273441
XAF 655.972413
XAG 0.010837
XAU 0.000234
XCD 3.210434
XCG 2.136804
XDR 0.815816
XOF 656.335155
XPF 119.331742
YER 281.299678
ZAR 19.014942
ZMK 10692.774215
ZMW 23.149641
ZWL 382.512303
  • SCS

    0.0200

    16.14

    +0.12%

  • CMSD

    0.0300

    24.16

    +0.12%

  • RBGPF

    -0.8300

    82.4

    -1.01%

  • RYCEF

    0.0000

    17.12

    0%

  • CMSC

    0.0300

    23.78

    +0.13%

  • RELX

    -0.3900

    39.51

    -0.99%

  • BCC

    -0.9300

    83.4

    -1.12%

  • VOD

    0.0600

    14.23

    +0.42%

  • NGG

    1.0800

    82.58

    +1.31%

  • RIO

    0.0400

    90.47

    +0.04%

  • BCE

    -0.0500

    25.15

    -0.2%

  • JRI

    0.0500

    13.73

    +0.36%

  • AZN

    1.2800

    94.23

    +1.36%

  • GSK

    1.1700

    50.32

    +2.33%

  • BTI

    -0.1700

    58.99

    -0.29%

  • BP

    0.2300

    36.76

    +0.63%

What will the Artemis Moon base look like?
What will the Artemis Moon base look like? / Photo: Lucie AUBOURG - AFP

What will the Artemis Moon base look like?

The next time NASA goes to the Moon, it intends to stay. Under the Artemis program, the US space agency plans to maintain a human presence, for the very first time, on a celestial body other than Earth.

Text size:

But building a lunar base is no small feat. It will need power generators, vehicles and habitats, and the space industry is racing to meet the technological challenges.

"It's the Super Bowl of engineering," Neal Davis, lead systems engineer for the Lunar Terrain Vehicle at space company Dynetics, told AFP.

Dynetics revealed its prototype design for a Moon rover last month at the Space Symposium in Colorado Springs.

But it probably won't be until later Artemis missions -- 7 onwards -- "where we're starting to look at adding permanent habitations on the surface," said NASA associate administrator Jim Free.

Artemis 3, the first planned landing, won't happen until later this decade, so habitat building wouldn't start before the 2030s.

The base would likely comprise multiple sites, he added, to diversify the targets of scientific exploration and to offer more flexibility for the landings.

- Power and communications -

Despite this distant timeline, companies are already chomping at the bit.

"Step zero is communications," Joe Landon, CEO of Crescent Space, a new subsidiary of Lockheed Martin dedicated to lunar services, told AFP.

"Think about when you move into a new apartment, you've got to hook up your phone and your internet first."

Starting out with a pair of satellites, the company wants to become the Moon's internet and GPS provider.

This would relieve the strain on NASA's Deep Space Network, which threatens to overheat in the face of all the upcoming missions, including private ones.

Landon estimates the value of the lunar market will be "$100 billion over the next 10 years."

Next up: switching on the lights.

Astrobotic, with 220 employees, is one of three companies selected by NASA to develop solar panels.

They need to be placed vertically because at the Moon's south pole -- the intended destination because it has water in the form of ice -- the Sun barely peeps above the horizon.

About 60 feet (18 meters) high, the Astrobotic panels will be connected by cables running several miles (kilometers), said Mike Provenzano, the company's director of lunar surface systems.

The solar arrays will be fixed to vehicles that can run them out to different locations.

- Vehicles -

For its scientific expeditions, NASA has tasked industry with developing an unpressurized -- that is to say, open top -- rover for two people, ready by 2028.

Unlike the Apollo missions' rovers, it will also have to operate autonomously for outings without an astronaut.

This means surviving frigid lunar nights, which can last two weeks, with temperatures dropping to around -280 degrees Fahrenheit (-170 Celsius).

Many companies have made a start.

Lockheed Martin has partnered with General Motors, leaning on the auto giant's expertise in electric and off-road vehicles.

Dynetics, a subsidiary of engineering behemoth Leidos, has joined forces with Nascar.

Its prototype, which will achieve a top speed of nine miles per hour (15 kilometers per hour), includes a robotic arm and metal wheels that are braided like textiles to maximize traction on the sandy surface and deal with any rocks they encounter.

"But at the same time, they actually have a lot of openings to the outside so that they don't collect that sand and carry it with us," Davis said.

Moon dust, or regolith, poses a major challenge because, lacking erosion by water or wind, it is almost as abrasive as glass.

NASA has yet to announce the selected company or companies.

In the longer term, NASA is working with the Japanese space agency JAXA on a pressurized vehicle, in which astronauts won't need to keep their suits on.

- Habitats -

Finally, the crew will need a place to hang up their helmets and call home.

NASA has awarded a $57.2 million contract to the Texas-based company Icon, which specializes in 3D printing, to develop the technology needed to build roads, landing strips on the Moon, and ultimately, dwellings.

The idea is to use lunar soil as a material. Other companies, such as Lockheed Martin, are developing inflatable habitat concepts.

"The beautiful thing is you can land it on the moon and inflate it and now there's a much larger volume for the crew to live in and work in," Kirk Shireman, vice president for the Lockheed Martin Lunar Exploration Campaign, told AFP.

Inside would be bedrooms, a kitchen, a space for scientific instruments, etc. -- all mounted on a frame, so the habitat can be mobile.

The basic concept behind returning to the Moon under Artemis is to help NASA prepare for much more distant missions to Mars.

"Whatever money we have to spend to go develop these systems on the moon, we want those same systems to be applicable to go to Mars," said Shireman.

(A.Berg--BBZ)