Berliner Boersenzeitung - Webb telescope spots signs of universe's biggest stars

EUR -
AED 4.36266
AFN 78.403573
ALL 96.652271
AMD 448.82188
ANG 2.126486
AOA 1089.329377
ARS 1707.957731
AUD 1.717838
AWG 2.13827
AZN 2.029696
BAM 1.955895
BBD 2.387966
BDT 145.077073
BGN 1.994971
BHD 0.447892
BIF 3494.023273
BMD 1.187928
BND 1.504623
BOB 8.2104
BRL 6.273922
BSD 1.185628
BTN 107.747253
BWP 15.604301
BYN 3.380836
BYR 23283.387086
BZD 2.384566
CAD 1.631518
CDF 2619.381102
CHF 0.923388
CLF 0.026016
CLP 1027.260466
CNY 8.261266
CNH 8.261629
COP 4383.157015
CRC 586.708847
CUC 1.187928
CUP 31.48009
CVE 110.270376
CZK 24.241273
DJF 211.13585
DKK 7.469218
DOP 74.241119
DZD 153.482633
EGP 55.894505
ERN 17.818919
ETB 184.307125
FJD 2.628231
FKP 0.871913
GBP 0.868061
GEL 3.195286
GGP 0.871913
GHS 12.92963
GIP 0.871913
GMD 87.315866
GNF 10385.156596
GTQ 9.099444
GYD 248.062093
HKD 9.264216
HNL 31.444514
HRK 7.536449
HTG 155.381035
HUF 381.711533
IDR 19949.348607
ILS 3.699546
IMP 0.871913
INR 109.026808
IQD 1556.185565
IRR 50041.463503
ISK 145.342496
JEP 0.871913
JMD 186.632814
JOD 0.842267
JPY 183.553272
KES 153.242603
KGS 103.884412
KHR 4787.349845
KMF 495.968443
KPW 1069.155932
KRW 1719.567159
KWD 0.364432
KYD 0.988048
KZT 595.749043
LAK 25579.031676
LBP 101627.232593
LKR 367.084806
LRD 219.350694
LSL 19.036537
LTL 3.507642
LVL 0.718565
LYD 7.487207
MAD 10.842808
MDL 20.001807
MGA 5351.615555
MKD 61.633005
MMK 2494.571257
MNT 4236.231983
MOP 9.522664
MRU 47.391748
MUR 54.074375
MVR 18.365957
MWK 2058.679306
MXN 20.58703
MYR 4.697665
MZN 75.730237
NAD 19.036539
NGN 1677.354548
NIO 43.598689
NOK 11.613718
NPR 172.389599
NZD 1.990017
OMR 0.456761
PAB 1.185658
PEN 3.981344
PGK 5.145078
PHP 70.151302
PKR 332.005401
PLN 4.206863
PYG 7968.220766
QAR 4.325661
RON 5.098627
RSD 117.414757
RUB 90.905771
RWF 1726.059257
SAR 4.454742
SBD 9.599607
SCR 17.415488
SDG 714.537467
SEK 10.617676
SGD 1.507581
SHP 0.891254
SLE 28.973532
SLL 24910.253491
SOS 676.410199
SRD 45.289757
STD 24587.709373
STN 24.530711
SVC 10.374506
SYP 13137.977718
SZL 19.030304
THB 36.967133
TJS 11.068326
TMT 4.169627
TND 3.39777
TOP 2.860245
TRY 51.545184
TTD 8.057393
TWD 37.390618
TZS 3011.960353
UAH 51.116301
UGX 4203.20491
USD 1.187928
UYU 44.492356
UZS 14391.746512
VES 425.529606
VND 31051.247706
VUV 142.273124
WST 3.273441
XAF 655.972413
XAG 0.010837
XAU 0.000234
XCD 3.210434
XCG 2.136804
XDR 0.815816
XOF 656.335155
XPF 119.331742
YER 281.299678
ZAR 19.014942
ZMK 10692.774215
ZMW 23.149641
ZWL 382.512303
  • SCS

    0.0200

    16.14

    +0.12%

  • CMSC

    0.0300

    23.78

    +0.13%

  • CMSD

    0.0300

    24.16

    +0.12%

  • BCC

    -0.9300

    83.4

    -1.12%

  • BCE

    -0.0500

    25.15

    -0.2%

  • JRI

    0.0500

    13.73

    +0.36%

  • NGG

    1.0800

    82.58

    +1.31%

  • RIO

    0.0400

    90.47

    +0.04%

  • RBGPF

    -0.8300

    82.4

    -1.01%

  • BP

    0.2300

    36.76

    +0.63%

  • RYCEF

    0.0000

    17.12

    0%

  • GSK

    1.1700

    50.32

    +2.33%

  • BTI

    -0.1700

    58.99

    -0.29%

  • RELX

    -0.3900

    39.51

    -0.99%

  • VOD

    0.0600

    14.23

    +0.42%

  • AZN

    1.2800

    94.23

    +1.36%

Webb telescope spots signs of universe's biggest stars
Webb telescope spots signs of universe's biggest stars / Photo: - - ESA/HUBBLE/AFP/File

Webb telescope spots signs of universe's biggest stars

The James Webb Space Telescope has helped astronomers detect the first chemical signs of supermassive stars, "celestial monsters" blazing with the brightness of millions of Suns in the early universe.

Text size:

So far, the largest stars observed anywhere have a mass of around 300 times that of our Sun.

But the supermassive star described in a new study has an estimated mass of 5,000 to 10,000 Suns.

The team of European researchers behind the study previously theorised the existence of supermassive stars in 2018 in an attempt to explain one of the great mysteries of astronomy.

For decades, astronomers have been baffled by the huge diversity in the composition of different stars packed into what are called globular clusters.

The clusters, which are mostly very old, can contain millions of stars in a relatively small space.

Advances in astronomy have revealed an increasing number of globular clusters, which are thought to be a missing link between the universe's first stars and first galaxies.

Our Milky Way galaxy, which has more than 100 billion stars, has around 180 globular clusters.

But the question remains: Why do the stars in these clusters have such a variety of chemical elements, despite presumably all being born around the same time, from the same cloud of gas?

- Rampaging 'seed star' -

Many of the stars have elements that would require colossal amounts of heat to produce, such as aluminium which would need a temperature of up to 70 million degrees Celsius.

That is far above the temperature that the stars are thought to get up to at their core, around the 15-20 million Celsius mark which is similar to the Sun.

So the researchers came up with a possible solution: a rampaging supermassive star shooting out chemical "pollution".

They theorise that these huge stars are born from successive collisions in the tightly packed globular clusters.

Corinne Charbonnel, an astrophysicist at the University of Geneva and lead author of the study, told AFP that "a kind of seed star would engulf more and more stars".

It would eventually become "like a huge nuclear reactor, continuously feeding on matter, which will eject out a lot of it," she added.

This discarded "pollution" will in turn feed young forming stars, giving them a greater variety of chemicals the closer they are to the supermassive star, she added.

But the team still needed observations to back up their theory.

- 'Like finding a bone' -

They found them in the galaxy GN-z11, which is more than 13 billion light years away -- the light we see from it comes from just 440 million years after the Big Bang.

It was discovered by the Hubble Space Telescope in 2015, and until recently held the record of oldest observed galaxy.

This made it an obvious early target for Hubble's successor as most powerful space telescope, the James Webb, which started releasing its first observations last year.

Webb offered up two new clues: the incredible density of stars in globular clusters and -- most crucially -- the presence of lots of nitrogen.

It takes truly extreme temperatures to make nitrogen, which the researchers believe could only be produced by a supermassive star.

"Thanks to the data collected by the James Webb Space Telescope, we believe we have found a first clue of the presence of these extraordinary stars," Charbonnel said in a statement, which also called the stars "celestial monsters".

If the team's theory was previously "a sort of footprint of our supermassive star, this is a bit like finding a bone," Charbonnel said.

"We are speculating about the head of the beast behind all this," she added.

But there is little hope of ever directly observing this beast.

The scientists estimate that the life expectancy of supermassive stars is only around two million years -- a blink of an eye in the cosmic time scale.

However they suspect that globular clusters were around until roughly two billion years ago, and they could yet reveal more traces of the supermassive stars they may have once hosted.

The study was published in the journal Astronomy and Astrophysics this month.

(P.Werner--BBZ)